Modeling techniques such as linear regression have been used to predict hurricane activity many months in advance of the start of the hurricane season with some success. In this paper, we construct feedforward neural networks to model Atlantic basin hurricane activity and compare the predictions of our neural network models to the predictions produced by statistical models found in the weather forecasting literature. We find that our neural network models produce reasonably accurate predictions that, for the most part, compare favorably to the predictions of statistical models.
International Journal of Fuzzy Logic and Intelligent Systems
/
제2권3호
/
pp.174-178
/
2002
This paper discusses a blind equalization technique for FIR channel system, that might be minimum phase or not, in digital communication. The proposed techniques consist of two parts. One is to estimate the original channel coefficients based on fourth-order cumulants of the channel output, the other is to employ RBF neural network to model an inverse system fur the original channel. Here, the estimated channel is used as a reference system to train the RBF. The proposed RBF equalizer provides fast and easy teaming, due to the structural efficiency and excellent recognition-capability of R3F neural network. Throughout the simulation studies, it was found that the proposed blind RBF equalizer performed favorably better than the blind MLP equalizer, while requiring the relatively smaller computation steps in tranining.
This paper presents a neural network based variable structure control scheme for nonlinear systems. In this scheme, a set of local variable structure control laws are designed on the basis of the linear models about preselected representative points which cover the range of the system operation of interest. From the combination of the set of local variable structure control laws, neural networks infer the approximate control input in between the operating points. The neural network based variable structure control alleviates the effects of model uncertainties, which cannot be compensated by the control techniques using feedback linearization. It also relaxes the discontinuity in the system’s behavior that appears when the control schemes based on the family of the linear models are applied to nonlinear systems. Simulation results of a ball and beam system, to which feedback linearization cannot be applied, demonstrate the feasibility of the proposed method.
본 논문에서는 학습과 정정 기능을 갖는 PWM 뉴럴네트워크를 설계하였다. 설계된 PWM 뉴럴시스템에서, 네트워크의 입력과 출력 신호들은 PWM 신호에 의해서 표현되어진다. 뉴럴네트워크에서 곱셈은 가장 많이 사용하는 동작이다. 승산과 합산의 기능은 PWM 기술과 간단한 혼합모드 회로기술에 의해서 실현된다. 그러므로 설계된 뉴럴네트워크는 단지 소규모의 칩상에서 구현될 수가 있다. 하나의 뉴런과 세개의 시냅스, 연관된 학습회로로 설계된 네트워크회로는 양호한 선형성과 넓은 범위의 동작범위를 가지고 있다. PWM을 이용한 신경망회로의 학습능력을 검증하기 위해, 델타 학습 규칙을 적용하였다. AND 기능과 OR 기능 학습 예측 HSPICE 시뮬레이션을 통해서 설계한 신경망회로의 기능이 성공적임을 증명하였다.
For the control of robotic manipulators with unknown or uncertain dynamics, leaming control schemes are very effective control schemes for repeated trajectory following tasks. In this class of controllers, control techniques using neural networks have been gaining much attention in recent years.. In this note, we discuss the leaming control techniques using neural networks and propose a new model-based control scheme using multilayered neural networks. Three-layerd neural network is used as a feedback controller to compensate the mismatched terms between model plant and real plant. Computer simulations are performed to show the applicability and the limitation of the proposed controller.
In this paper the possibility of using different regression models to predict the mechanical properties of limestone concrete after exposure to high temperatures, based on the results of non-destructive techniques, that could be easily used in-situ, is discussed. Extensive experimental work was carried out on limestone concrete mixtures, that differed in the water to cement (w/c) ratio, the type of cement and the quantity of superplasticizer added. After standard curing, the specimens were exposed to various high temperature levels, i.e., 200℃, 400℃, 600℃ or 800℃. Before heating, the reference mechanical properties of the concrete were determined at ambient temperature. After the heating process, the specimens were cooled naturally to ambient temperature and tested using non-destructive techniques. Among the mechanical properties of the specimens after heating, known also as the residual mechanical properties, the residual modulus of elasticity, compressive and flexural strengths were determined. The results show that residual modulus of elasticity, compressive and flexural strengths can be reliably predicted using an artificial neural network approach based on ultrasonic pulse velocity, residual surface strength, some mixture parameters and maximal temperature reached in concrete during heating.
트래픽의 통계적 변동과 고도의 시변 특성 때문에, 최소의 반응시간을 가지고 고도의 동적인 기술과 적응 그리고 학습능력을 요구하는 네트워크의 자원으로 관리하도록 한다. 뉴럴 네트워크는 ATM 셀 도착율과 큐 길이를 정규화시키며, 그것은 적응 학습 알고리즘을 가지고, ATM 네트워크에서 발생되는 특주를 방지하기 위한 방법을 연구한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권10호
/
pp.5159-5178
/
2018
Network Intrusion detection is a rapidly growing field of information security due to its importance for modern IT infrastructure. Many supervised and unsupervised learning techniques have been devised by researchers from discipline of machine learning and data mining to achieve reliable detection of anomalies. In this paper, a deep convolutional neural network (DCNN) based intrusion detection system (IDS) is proposed, implemented and analyzed. Deep CNN core of proposed IDS is fine-tuned using Randomized search over configuration space. Proposed system is trained and tested on NSLKDD training and testing datasets using GPU. Performance comparisons of proposed DCNN model are provided with other classifiers using well-known metrics including Receiver operating characteristics (RoC) curve, Area under RoC curve (AuC), accuracy, precision-recall curve and mean average precision (mAP). The experimental results of proposed DCNN based IDS shows promising results for real world application in anomaly detection systems.
International Journal of Computer Science & Network Security
/
제22권2호
/
pp.145-152
/
2022
One of the impacts of Covid-19 on education systems has been the shift to online education. This shift has changed the way education is consumed and perceived by students. However, the exact nature of student perception about online education is not known. The aim of this study was to understand the perceptions of Saudi higher education students (e.g., post-school students) about online education during the Covid-19 pandemic. Various aspects of online education including benefits, features and cybersecurity were explored. The data collected were analysed using statistical techniques, especially artificial neural networks, to address the research aims. The key findings were that benefits of online education was perceived by students with positive experience or when ensured of safe use of online platforms without the fear cyber security breaches for which recruitment of a cyber security officer was an important predictor. The issue of whether perception of online education as a necessity only for Covid situation or a lasting option beyond the pandemic is a topic for future research.
We introduce high-order Hopfield neural networks with Leakage delays. Furthermore, we study the uniqueness and existence of Hopfield artificial neural networks having the weighted pseudo almost periodic forcing terms on finite delay. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.