• Title/Summary/Keyword: neural network models

Search Result 1,801, Processing Time 0.027 seconds

Ensemble techniques and hybrid intelligence algorithms for shear strength prediction of squat reinforced concrete walls

  • Mohammad Sadegh Barkhordari;Leonardo M. Massone
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.37-59
    • /
    • 2023
  • Squat reinforced concrete (SRC) shear walls are a critical part of the structure for both office/residential buildings and nuclear structures due to their significant role in withstanding seismic loads. Despite this, empirical formulae in current design standards and published studies demonstrate a considerable disparity in predicting SRC wall shear strength. The goal of this research is to develop and evaluate hybrid and ensemble artificial neural network (ANN) models. State-of-the-art population-based algorithms are used in this research for hybrid intelligence algorithms. Six models are developed, including Honey Badger Algorithm (HBA) with ANN (HBA-ANN), Hunger Games Search with ANN (HGS-ANN), fitness-distance balance coyote optimization algorithm (FDB-COA) with ANN (FDB-COA-ANN), Averaging Ensemble (AE) neural network, Snapshot Ensemble (SE) neural network, and Stacked Generalization (SG) ensemble neural network. A total of 434 test results of SRC walls is utilized to train and assess the models. The results reveal that the SG model not only minimizes prediction variance but also produces predictions (with R2= 0.99) that are superior to other models.

Functional memories constructed of neural network

  • Zhu, Hanxi;Aoyama, Tomoo;Yoshihara, Ikuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.210-213
    • /
    • 1999
  • Anyone observes that information processing in animal brains is depended on neural networks. On the other hand, engineering models for the neural networks are well known now, and they have been studied, and learning facility is found in the model. We are sure there is a potential in order to create a non Neuman-machine in the engineering models. We studied iteration forms including the engineering neural network models, taking a first step for the creation.

  • PDF

A Comparative Study on the Performance of Intrusion Detection using Decision Tree and Artificial Neural Network Models (의사결정트리와 인공 신경망 기법을 이용한 침입탐지 효율성 비교 연구)

  • Jo, Seongrae;Sung, Haengnam;Ahn, Byunghyuk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.33-45
    • /
    • 2015
  • Currently, Internet is used an essential tool in the business area. Despite this importance, there is a risk of network attacks attempting collection of fraudulence, private information, and cyber terrorism. Firewalls and IDS(Intrusion Detection System) are tools against those attacks. IDS is used to determine whether a network data is a network attack. IDS analyzes the network data using various techniques including expert system, data mining, and state transition analysis. This paper tries to compare the performance of two data mining models in detecting network attacks. They are decision tree (C4.5), and neural network (FANN model). I trained and tested these models with data and measured the effectiveness in terms of detection accuracy, detection rate, and false alarm rate. This paper tries to find out which model is effective in intrusion detection. In the analysis, I used KDD Cup 99 data which is a benchmark data in intrusion detection research. I used an open source Weka software for C4.5 model, and C++ code available for FANN model.

A Study on Development of Long-Term Runoff Model for Water Resources Planning and Management (수자원의 이용계획을 위한 장기유출모형의 개발에 관한 연구)

  • Cho, Hyeon-Kyeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.3
    • /
    • pp.61-68
    • /
    • 2013
  • Long-term runoff model can be used to establish the effective plan of water reources allocation and the determination of the storage capacity of reservoir. So this study aims at the development of monthly runoff model using artificial neural network technique. For this, it was selected multi-layer neural network(MLN) and radial basis function neural network(RFN) model. In this study, it was applied model to analysis monthly runoff process at the Wi stream basin in Nakdong river which is representative experimental river basin of IHP. For this, multi-layer neural network model tried to construct input 3, hidden 7, and output 1 for each number of layer. As the result of analysis of monthly runoff process using models connected with artificial neural network technique, it showed that these models were effective in the simulation of monthly runoff.

Neural network heterogeneous autoregressive models for realized volatility

  • Kim, Jaiyool;Baek, Changryong
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.659-671
    • /
    • 2018
  • In this study, we consider the extension of the heterogeneous autoregressive (HAR) model for realized volatility by incorporating a neural network (NN) structure. Since HAR is a linear model, we expect that adding a neural network term would explain the delicate nonlinearity of the realized volatility. Three neural network-based HAR models, namely HAR-NN, $HAR({\infty})-NN$, and HAR-AR(22)-NN are considered with performance measured by evaluating out-of-sample forecasting errors. The results of the study show that HAR-NN provides a slightly wider interval than traditional HAR as well as shows more peaks and valleys on the turning points. It implies that the HAR-NN model can capture sharper changes due to higher volatility than the traditional HAR model. The HAR-NN model for prediction interval is therefore recommended to account for higher volatility in the stock market. An empirical analysis on the multinational realized volatility of stock indexes shows that the HAR-NN that adds daily, weekly, and monthly volatility averages to the neural network model exhibits the best performance.

Pipeline wall thinning rate prediction model based on machine learning

  • Moon, Seongin;Kim, Kyungmo;Lee, Gyeong-Geun;Yu, Yongkyun;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4060-4066
    • /
    • 2021
  • Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.

A review and comparison of convolution neural network models under a unified framework

  • Park, Jimin;Jung, Yoonsuh
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.161-176
    • /
    • 2022
  • There has been active research in image classification using deep learning convolutional neural network (CNN) models. ImageNet large-scale visual recognition challenge (ILSVRC) (2010-2017) was one of the most important competitions that boosted the development of efficient deep learning algorithms. This paper introduces and compares six monumental models that achieved high prediction accuracy in ILSVRC. First, we provide a review of the models to illustrate their unique structure and characteristics of the models. We then compare those models under a unified framework. For this reason, additional devices that are not crucial to the structure are excluded. Four popular data sets with different characteristics are then considered to measure the prediction accuracy. By investigating the characteristics of the data sets and the models being compared, we provide some insight into the architectural features of the models.

A comparative Study of ARIMA and Neural Network Model;Case study in Korea Corporate Bond Yields

  • Kim, Steven H.;Noh, Hyunju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.19-22
    • /
    • 1996
  • A traditional approach to the prediction of economic and financial variables takes the form of statistical models to summarize past observations and to project them into the envisioned future. Over the past decade, an increasing number of organizations has turned to the use of neural networks. To date, however, many spheres of interest still lack a systematic evaluation of the statistical and neural approaches. One of these lies in the prediction of corporate bond yields for Korea. This paper reports on a comparative evaluation of ARIMA models and neural networks in the context of interest rate prediction. An additional experiment relates to an integration of the two methods. More specifically, the statistical model serves as a filter by providing estimtes which are then used as input into the neural network models.

  • PDF

Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result (피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 초기 연결강도 의존성 개선)

  • Park, Sol-Ji;Joo, No-Ah;Park, Hyun-Il;Kim, Young-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.456-463
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by in-situ test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network(NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network(CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

  • PDF

Study on Streamflow Prediction Using Artificial Intelligent Technique (인공지능기법을 이용한 하천유출량 예측에 관한 연구)

  • An, Seung Seop;Sin, Seong Il
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.611-618
    • /
    • 2004
  • The Neural Network Models which mathematically interpret human thought processes were applied to resolve the uncertainty of model parameters and to increase the model's output for the streamflow forecast model. In order to test and verify the flood discharge forecast model eight flood events observed at Kumho station located on the midstream of Kumho river were chosen. Six events of them were used as test data and two events for verification. In order to make an analysis the Levengerg-Marquart method was used to estimate the best parameter for the Neural Network model. The structure of the model was composed of five types of models by varying the number of hidden layers and the number of nodes of hidden layers. Moreover, a logarithmic-sigmoid varying function was used in first and second hidden layers, and a linear function was used for the output. As a result of applying Neural Networks models for the five models, the N10-6model was considered suitable when there is one hidden layer, and the Nl0-9-5model when there are two hidden layers. In addition, when all the Neural Network models were reviewed, the Nl0-9-5model, which has two hidden layers, gave the most preferable results in an actual hydro-event.