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Abstract
There has been active research in image classification using deep learning convolutional neural network

(CNN) models. ImageNet large-scale visual recognition challenge (ILSVRC) (2010-2017) was one of the most
important competitions that boosted the development of efficient deep learning algorithms. This paper introduces
and compares six monumental models that achieved high prediction accuracy in ILSVRC. First, we provide a
review of the models to illustrate their unique structure and characteristics of the models. We then compare
those models under a unified framework. For this reason, additional devices that are not crucial to the structure
are excluded. Four popular data sets with different characteristics are then considered to measure the prediction
accuracy. By investigating the characteristics of the data sets and the models being compared, we provide some
insight into the architectural features of the models.

Keywords: classification, convolutional neural network (CNN), ImageNet large-scale visual recog-
nition challenge (ILSVRC), image data

1. Introduction

LeCun et al. (1989) first introduced convolutional neural network (CNN), which had one of the rep-
resentative deep learning architectures widely used in image processing these days. Despite CNN’s
success, the artificial neural network was not suitable in practice due to the gradient vanishing prob-
lem. That is, the deeper the neural network, the slower the learning speed. Thus, model fitting was
not satisfactory. This issue prevented researchers from learning by adding many hidden layers. For
this reason, the area of the artificial neural network had been underdeveloped until the mid-2000s.

The ImageNet large scale visual recognition challenge (ILSVRC) is an annual competition for
image classification held between 2010 and 2017. In this competition, participants are asked to cat-
egorize images of ImageNet (Deng et al., 2009), a large number of visual data databases. A training
data set with image labels is provided along with an unlabeled test data set. Competitors predict the
label in the test data. An evaluation server then releases the classification accuracy at the end of the
competition.

There have been various technical attempts to improve CNN. Using ReLU (Nair and Hinton,
2010) for an activation function of layers solved the problem of gradient vanishing. AlexNet (Iandola
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(a) One stack of 7 × 7 filter (b) Three stacks of 3 × 3 filters
Figure 1: Three 3 × 3 layers perform the same function as one 7 × 7 layer.

et al., 2016) disseminates the utilization of GPUs to boost the computing speed. The improved artifi-
cial neural network showed higher performance in various fields compared to conventional machine
learning methods. After AlexNet won the ILSVRC in 2012 by a large gap compared with other exist-
ing models, several seminal models were developed. The models that won the ILSVRC in each year
with their ingenious idea caused numerous follow-up studies.

In this paper, we focus on these influential models developed since AlexNet. For this reason, we
select six models that demonstrated high performance with a unique structure in ILSVRC; They are
VGG (Simonyan and Zisserman, 2014), ResNet (He et al., 2016), Wide residual networks (Zagoruyko
and Komodakis, 2016), NASNet (Zoph et al., 2018), Mobilenet (Howard et al., 2017), and ShuffleNet
(Zhang et al., 2018). For the models to be comparable, we attempt to modify their original structure
to unify model complexity. ResNet, MobileNet, ShuffleNet are one group using about one million
parameters. The others are rather complicated models employing over two million parameters. So,
the modified models can be compared within each group, while maintaining their unique features of
the architectures. We provide details of one variant that are closely related to the model we implement.

We apply these unified models to the four popular data sets, CIFAR-10 (Krizhevsky et al., 2014),
CIFAR-100 (Netzer et al., 2011), Fashion-MNIST (Xiao et al., 2017), and SVHN (Netzer et al.,
2011), and measure their prediction accuracy. We believe this paper provides not only a review but
also a better understanding of the CNN models.

Following is the outline of this paper. We introduce the characteristics of each model in Section 2.
Section 3 illustrates the details of the unified framework. Section 4 provides their application to the
real-world data and our findings.

2. Review of convolutional neural network (CNN) models

2.1. VGGNet

Simonyan and Zisserman (2014) investigated the effect of network depth on large-scale image data
using VGGNet. VGGNet uses a 3×3 filter in contrast to other popular models such as GoogLeNet
(Szegedy et al., 2015) and AlexNet (Iandola et al., 2016), which employ 7×7 or 11×11 size filters.
VGGNet dramatically improved the accuracy of image classification even with the small filter. Figure
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Figure 2: Original structure of VGG-13.

1 illustrates how three 3×3 layers work exactly the same as one 7×7(We use the expression ‘filter’
and ‘layer’ interchangeably as both the terms are commonly used).

There are two advantages when using three 3×3 filters. First, the decision function becomes more
distinguishable because it can use the nonlinear function three times more. Second, the number of
parameters in the model is reduced. 3×3 layer can achieve the same effect of one 7×7(11×11) layer
using 55%(37%) number of parameters. There are largely five variants of VGG structure varying the
model’s depth from 11 to 19 and the number of channels from 64 to 512. As an example, the architec-
ture of VGG-13 that uses 13 convolution layers with an activation function ReLU (Nair and Hinton,
2010) is provided in Figure 2. First ten convolution layers map feature of sizes {224, 112, 56, 28, 14}
with {2, 2, 2, 2, 2} layers, respectively. Max-pooling (Scherer et al., 2010) is performed with a window
pixel of 2 × 2 of stride 2 when reducing the size. The stack of these ten layers is followed by three
fully connected (FC) layers with {4096, 4096, 1000} channels. VGG-13 employs the softmax layer as
its final layer.

2.2. ResNet

ResNet (He et al., 2016) opened an era of true ‘deep’ learning by using lots of layers. Models before
ResNet have at most around 20 layers, whereas ResNet attempted to make a model using more than
1,000 layers even for a rather small data set. ResNet is a short expression of the residual net. Residual
is defined as the difference between the input x and the function H(x) that maps the input to the target
value y. ResNet trains the model in a way that minimizes H(x) − x so that the output value of the
network is x instead of y. This is reasonable for the problem of image classification because the target
y represents a category of an image. The correct classification means the target should be the same
category of the input x. H(x) − x is called residual. This shows contrast to the previous methods that
operate learning to minimize H(x) − y.

As the number of layers increases, the problem of gradient vanishing/exploding becomes worse.
To overcome this issue, ResNet uses shortcut (or skip) connection and element-wise addition as illus-
trated in Figure 3. In the figure, F (x) is the residual H(x)−x, and ‘identity’ indicates identity mapping
whose output is the same as the input.

There are two types of connections in the residual blocks of ResNet. Both use identity mapping,
but the block’s positions are different. Figure 4 shows the structure of each block. The block in the
first position where the size changes needs another convolution layer among mapping, so it is called
the ‘convolution block’. The other one is called ‘identity block’. There are five versions of ResNet
models utilizing these blocks in (Deng et al., 2009) designed for ImageNet (Deng et al., 2009) data.
We explain and illustrate one version, ResNet-34 in Figure 5.

In Figure 5, ‘Conv Block’ and ‘Id Block’ stand for the convolution block and identity block,
respectively. The first 7 × 7 convolution in ResNet-34 makes the ImageNet image into 112 × 112
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Figure 3: A building block skipping one or more layers in the residual learning (He et al., 2016).

(a) A convolution block
(b) A identity block

Figure 4: Two types of blocks in ResNet.

Figure 5: Original structure of ResNet-34.

with stride 2. 3 × 3 max-pooling layer then decreases the image size in half. Next, ResNet blocks
are piled up. Each block consists of double-stacked 3 × 3 convolution layers with {64, 128, 256, 512}
channels respectively. In each step, the block reduces image size, not using a pooling layer but using
the first block as a convolution block. Finally, the image passes through the average-pooling layer,
fully connected layer with 1,000 channels, and softmax layer.

2.3. Wide residual networks (WRN)

Zagoruyko and Komodakis (2016) proposed wide residual networks (WRN) based on the structure of
ResNet (He et al., 2016). ResNet opened the era of true deep learning, showing better performance
as the number of layers increases. However, there are too many layers compared to the improvement,
which slow down the learning speed. To resolve this issue, Zagoruyko and Komodakis (2016) created
a ResNet structure that was shortened in length and expanded in width. In ResNet, it increases depth
by compressing the width as thin as possible. However, identity mapping does not force the gradient to
go through the residual block when it flows through the network. This can cause a problem that only a
few blocks learn useful information. In contrast, WRN increases performance and solves the problem
by improving the residual block instead of increasing depth. WRN has about 50 times fewer layers
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Figure 6: Wide-dropout residual block (d) compared to basic (a), bottleneck (b), and basic-wide (c).
This figure is adopted from Zagoruyko and Komodakis (2016).

Figure 7: Structure of WRN-n-k: Expanded convolution block has similar structure to a convolution block in
Figure 4. The expanded convolution block has k times wider layer than that of the ResNet convolution block.
Wide - dropout block has the same architecture as Figure 6(d) with widening factor k. N in the bottom is

calculated as N = (n − 4)/6.

and runs about 2 times faster when compared to the ResNet using a similar number of parameters.
Another feature of WRN is the usage of dropout (Srivastava et al., 2014) and batch normalization

(Ioffe and Szegedy, 2015). Both have regularization effect of preventing the overfit. WRN inserts
dropout between the convolutional layers whose effect have been empirically proved. Moreover, WRN
changed the order of convolution, batch normalization (BN), and activation (ReLU) into BN-ReLU-
Conv from the typical order Conv-BN-ReLU. This tends to train faster and achieve higher accuracy.
Zagoruyko and Komodakis (2016) introduced six types of convolutions denoted by ‘B(M)’. The
original version is B(3, 3), which is (d) in Figure 6. The other five type of convolutions are B(3, 1, 3),
B(1, 3, 1), B(1, 3), B(3, 1), and B(3, 1, 1), where the numbers in B() indicate the list of kernel sizes of
the convolutional layers in a block. For example, B(3, 1, 3) has one additional 1 × 1 layer compared
to B(3, 3). Using the notation of Zagoruyko and Komodakis (2016), WRN-n-k-B(M) implies WRN
model using total n convolution layers, widening factor k, and residual block B(M). For example,
WRN-40-2-B(3, 3) is the WRN model using B(3, 3) residual block of a total 40 layers and two times
wider than the original one, which will be applied to real data sets in Section 4. The architecture of
WRN-n-k is given in Figure 7.

The initial convolution layer in Figure 7 is not widened yet. Next, it consecutively connects to
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Figure 8: Overview of neural architecture search (Zoph and Le, 2016). The RNN controller predicts a sample
architecture A with probability p. The architecture A trains a child network. It finds the gradient value of p

during training, and scale it by R to update the controller.

three groups of blocks consisting of N blocks whose sizes are {32, 16, 8}. Each block has doubly
stacked 3 × 3 convolution layer of {16, 32, 64} channels with widening factor k. This widening factor
creates more channels so that it expands (or widens) the convolution layer. Finally, the average-
pooling layer makes the size of output be 1 × 1.

2.4. Neural architecture search (NAS) Net

Researchers manually designed the architectures of the described methods. In contrast, neural archi-
tecture search (NAS) automatically plans optimal networks and builds an architecture via machine
learning. Zoph and Le (2016) proposed optimal architecture based on reinforcement learning. NAS-
Net (Zoph et al., 2018) suggested automatic machine learning (AutoML), which constructs its struc-
ture by machine learning. NASNet focuses on the automated process of feature learning, architecture
search, and hyperparameter optimization. Figure 8 shows the process of NAS where the recurrent
neural network (RNN) controller uses the target data to learn architecture and its performance based
on the output.

NASNet consists of a large number of blocks, which is the smallest unit of its structure. The
blocks in Figure 9(a) conduct two operations to yield one feature map. Five RNN controllers (white
squares) construct one block. The combination operation depends on how to combine two outputs:
element-wise or channel-wise. ‘add’ (green box) in Figure 9(b) represents combining two outputs as
element-wise. The other type is ‘concatenate’ that channel-wisely combines two outputs.

After Nasnet constructs the blocks, it designs the convolution cells. There are two types of con-
volution cells; normal cell and reduction cell. The feature maps of the input and output have the same
size in a normal cell. In contrast, the reduction cell halves the width and height of the feature map by
setting some blocks’ stride as 2.

The process explained in Figure 8 is part of the learning process in the reinforcement learning. In
general, reinforcement learning requires repeated heavy learning to improve its performance. When
the image size or the number of images is large, such as ImageNet, heavy computation is needed to
find the best model. Even with this limitation, NAS is meaningful because it showed the ability to
find a model based on reinforcement learning comparable to the one designed by human.
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(a) Block is formed from the left. (b) A formed block.
Figure 9: Hidden state inputs are selected from hi−1 and hi−1. Various types of identity, convolutions, and pooling
layers can be selected as operations. Adding or concatenating can be done in computer operation (Zoph et al.,
2018). Two hidden state inputs (grey squares), two operations (yellow squares), and one combination operation

are processed in the order in panel (a).

Figure 10: Inception module described in Chollet (2017).

NASNet can transfer its fitted architecture using small data to a larger one. Zoph et al. (2018) first
used CIFAR-10 data (Krizhevsky et al., 2014) to find an optimal architecture and then transferred it to
ImageNet data (Deng et al., 2009). The transferred structure using ImageNet is similar to the original
one but adding a convolution layer and two reduction cells.

2.5. MobileNet

MobileNet (Howard et al., 2017) reduces computation and model size by adopting the concept of
‘depthwise separable convolution’ and two hyperparameters called ‘width multiplier’ and ‘resolution
multiplier’. As a result, it becomes possible to run a neural network model in a limited environment
such as mobile devices. Below are the details of the above terminologies used in MobileNet.

Depthwise separable convolution It was adopted from Xception (Chollet, 2017) that had used an
idea of Inception (Szegedy et al., 2016). Depthwise separable convolution is composed of depthwise
convolution and pointwise convolution. Inception module is a method of applying the convolution
to the feature map in the previous step with multiple kernel sizes, as presented in Figure 10. The
Inception module is advangageous because it extracts various feature values using few parameters.
Xception extended this idea, and the ‘extreme’ version of the Inception module allows one 3 × 3
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Figure 11: The depthwise separable convolution adapted from Wei Wang et al. (2020). Depthwise convolution
applies a single filter to each input channel, and then 1 × 1 convolution called pointwise convolution is adopted

to combine the outputs.

Figure 12: The structure of depthwise separable convolution (right), compared to standard convolution (left).
BatchNormalization (BN) and ReLU layer follow from each convolution layer (Howard et al., 2017).

convolution per output channel. It is used in MobileNet, as shown in Figure 11. Figure 12 illustrates
how the depthwise separable convolution differs from the standard one.

Width multiplier and resolution multiplier Howard et al. (2017) suggested two hyperparame-
ters: width multiplier α ∈ (0, 1) and resolution multiplier ρ ∈ (0, 1). Both hyperparameters efficiently
allow models to tradeoff between latency and accuracy. The width parameter is multiplied by the
number of input and output channels. The resolution parameter is multiplied by the feature map size.
The number of all parameters is then reduced by α2 and ρ2 approximately. The variant of MobileNet is
determined by two hyperparameters. For example, ‘0.75 MobileNet-192’ has α = 0.75 and ρ = 0.857,
where the original feature map size(224 × 224) is reduced to 192 × 192(192=224 · 0.857).

The model with α = 1 and ρ = 1, ‘1.0 MobileNet-224’ is the baseline MobileNet. In addition,
reduced MobileNets are the models with α < 1 or ρ < 1. The architecture can be divided into
five parts, as presented in Figure 13. First, there is one convolution layer with stride 2. It halves
the input feature map size. Then two groups of blocks that are composed of six and five depthwise
separable convolution blocks come next. Finally, two depthwise separable convolution blocks follow.
The average pooling layer (AvgPool) makes each feature map size 1 × 1, and a fully connected layer
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Figure 13: The structure of a MobileNet. Details of ‘Conv dw block’ is given in Figure 12.

Figure 14: There are two group convolutions (GConv1 and GConv2). Channels are combined into three groups
(red, green and blue) in this network.

comes in the end.

2.6. ShuffleNet

ShuffleNet (Zhang et al., 2018) aims to create a minimal model by reducing the number of parameters
and the computational cost, which is similar to MobileNet in Section 2.5. To build an efficient struc-
ture with reasonable performance, ShuffleNet employs depthwise separable convolution as MobileNet
does. ShuffleNet hires two more devices; ‘group convolution’ and ‘channel shuffle’.

The concept of group convolution has been introduced in AlexNet. It is motivated by the limited
performance of GPU. As a result, the computational cost could be reduced, and the accomplishment
became unexpectedly better. Iandola et al. (2016) divided the channels into two groups to train in
AlexNet. Accordingly, ShuffleNet uses the ‘group convolution’ to boost its performance and to reduce
computational cost. One can use a relatively large number of channels proportional to the amount
of reduced computation. It allows the network to have more information. Figure 14 represents a
network with group convolutions. When input data enters in the beginning, the channels are combined
into groups. Each group conducts convolution separately. However, a problem occurs if there is no
communication between the groups. Because the information flows inside each group only, the whole
network’s representation becomes weak. In another perspective, it is similar to learning individual
networks group by group. To prevent this problem, ShuffleNet shuffles the channels within each
group. This process relates the input and output channels. Figure 15 illustrate this process. First, the
channels of each group are divided into subgroups again in Figure 15 (b) before the channel shuffle in
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Figure 15: Channel shuffles: Groups are divided into subgroups (squares in the feature layer of (b)), and conduct
shuffling. Shuffle operation is simple; g × n channels are reshaped into (g, n). Then it becomes the input.

Transposing, flattening are followed. The final shuffled channels are given in (c).

Figure 16: (a) shows the unit without channel shuffle. (b) adds a channel shuffle to (a). (c) cuts the output size
into half through controlling shortcut path using average pooling layer and developing channel dimension using

channel concatenating.

(c). Finally, the channels of each group are mixed, and therefore every group becomes related to all
other groups.

Similar to the previously introduced models, the ShuffleNet repeats architecture of the ShuffleNet
unit. Figure16 shows the structure of the ShuffleNet unit. Assuming the input size c × h × w and the
number of bottleneck channel m, the computational cost of ShuffleNet is hw(2cm/g+gm). Comparing
this with the cost of ResNet hw(2cm + 9m2), we can see the computational cost can be significantly
reduced in general.

The architecture of ShuffleNet in Figure 17 consists of four stages. In the beginning, there are
the convolution layer and max-pooling layer with 3 × 3 kernel size and 2 strides. Each layer halves
image size so the feature map becomes 56× 56 from 224× 224. In stage 2, the first shuffle unit with 2
strides halves the feature map size, and three shuffle units follow. Similarly, the first shuffle unit with
2 strides halves the feature map size in stages 3 and 4. There are seven and three shuffle units after
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Figure 17: There are four stages in the structure of ShuffleNet. Stage 1 has one shuffle unit. There are 4, 8, and 4
shuffle units in stage 2, 3, and 4, respectively. 7 × 7 kernel in the average pooling (AvgPool) converts the feature

map into 1 × 1. FC-1000 represents a fully connected layer with 1000 channels.

the first unit, respectively. The final global average pooling with 7× 7 kernel converts the feature map
into 1 × 1. The fully connected layer flattens the whole channels.

3. Transformed framework for comparison

The six models reviewed in Section 2 are modified to become relatively similar in size. Below are the
details of each model.

Figure 18: AutoML determines the structure of NASNet-A using reinforcement learning (Zoph et al., 2018).

1. VGGNet: We transform the original structure of VGG-13. There are three blocks, and each block
reduces the output size in half. Each block uses two vgg layers using {64, 128, 256} number of
filters, respectively. Input image then flows into six convolution layers and two fully connected
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layers. Thus, the model is eight layers deep. The model is sketched in the first row (from the top)
of Figure 19.

2. ResNet: The second row in Figure 19 shows ResNet that stacks 18 layers of 3 × 3 convolutions
on the feature maps of sizes {32, 16, 8}, six layers for each feature map size. The 3×3 convolution
layer is at the top, and the global average pooling layer is at the bottom of the stack of layers.

3. WRN: WRN using 40 layers with widening factor 2 is denoted by ‘WRN-40-2’. Section 2.3
describes the specific structures of WRN. The structure of ‘WRN-40-2’ is shown in the third row
of Figure 19.

4. NASNet: We use the original structure of NASNet-A without modification. We provide its struc-
ture in Figure 18.

5. MobileNet: The values of width parameter α and resolution parameter ρ are both set to one. We
remove two depthwise convolution blocks from the model and fix the size of the feature map for
input as 32 × 32. The fourth row in Figure 19 shows the structure of MobileNet.

6. ShuffleNet: The final row in Figure 19 shows the modified structure of the ShuffleNet. We use the
max-pooling layer with stride 1 and remove stage 2 from the original model introduced in Section
2.6.

4. Real data applications

We use four data sets, which details are given below.

1. CIFAR-10: CIFAR-10 (Krizhevsky et al., 2014) data set contains 60,000 number of 32 × 32 pixel
color images of 10 different classes. The 10 classes represent airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships, and trucks. There are 6,000 images of each class.

2. CIFAR-100: Similar to CIFAR-10, CIFAR-100 (Netzer et al., 2011) contains 60,000 32×32 pixel
color images of 100 different classes. Each class contains 600 images. The 100 classes are grouped
into 20 categories; aquatic mammals, fish, flowers, food containers, fruit and vegetables, household
electrical devices, household furniture, insects, large carnivores, large man-made outdoor things,
large natural outdoor scenes, large omnivores and herbivores, medium-sized mammals, non-insect
invertebrates, people, reptiles, small mammals, trees, vehicles 1, and vehicles 2.

3. Fasion-MNIST: Fashion-MNIST (Xiao et al., 2017) data consists of 28 × 28 pixel gray-scale
images of 10 classes. This data set is known as a representative of low pixel size and gray-scale
image. It contains 70,000 images among which 60,000 are allocated for training data and the
others for test data. The labels of images are assigned to one of the following; T-shirt/top, trouser,
pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot.

4. SVHN: SVHN (Netzer et al., 2011) is a photographed data of house numbers collected by Google
Street view. There are 73257 images for training and 26032 images for testing. There are two
formats of SVHN: original images of full numbers with bounding boxes for each digit and cropped
photos into 32 × 32 size. We use the latter format, which is widely used. There are 10 classes (or
digits) from 0 to 9.
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Figure 19: The structure of the transformed models for VGGNet, ResNet, WRN, MobileNet, and ShuffleNet
from top to bottom.
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Table 1: The mean prediction accuracy of six models averaged over three experiments. The accuracy for ‘top5’
considers top-ranked five candidates for predicting the target class. The first five rows show the results from our
transformed framework, whereas the other six rows obtained from the original version of the models

Model CIFAR-10 CIFAR-100 CIFAR-100 (top5) Fasion-MNIST SVHN
ResNet 87.70 59.51 86.39 94.27 95.76

MobileNet 90.08 64.64 88.42 93.95 95.73
ShuffleNet 84.70 41.86 71.83 88.82 94.56
VGGNet 86.51 57.56 84.77 91.59 95.28

WRN 85.24 46.61 73.32 93.27 95.52
NASNet (orgn) 92.44 64.47 86.39 94.39 95.96
ResNet (orgn) 88.76 55.03 82.62 93.55 95.97

MobileNet (orgn) 89.51 60.35 86.00 93.66 95.81
ShuffleNet (orgn) 83.83 42.37 71.28 88.62 94.83
VGGNet (orgn) 87.11 56.25 84.01 91.62 95.03

WRN (orgn) 81.52 45.22 76.13 93.34 94.69

An optimizer RMSProp (Mukkamala and Hein, 2017) is used. We use Google colaboratory’s GPU,
Tensorflow, and Keras for the deep learning framework in the data applications. Specific versions of
them are as follows,

• Python: 3.6.9

• Tensorflow: 2.3.0

• Keras: 2.4.0

• CPU: Intel Xeon 2.30GHz

• GPU: Tesla P100-PCIE-16GB

• RAM: 12GB

We split the data into three parts; training, validation, and test data. The prediction accuracy is
calculated over the test data. Because all values in the data sets are categorical, we calculate the
classification accuracy to gauge the performance. In addition, we use the top-ranked five categories
for the CIFAR-100 to measure the prediction accuracy. That is, our prediction is correct when the
top five (predicted) classes include the target class. It is because there are too many classes. Table
1 presents the average prediction accuracy over three repetitions. The number of repetitions is small
due to the restriction on computing time, but the standard errors of the mean prediction accuracy are
all smaller than 0.005 except for the CIFAR-100 using WRN. The standard error for the exceptional
case is 0.044. So, we regard the results do not have large variation. The top three models in Table
1 contains about one million parameters, and the next three models have more than two million. Six
models in the bottom of the table are the original version of the models. Because we do not transform
the NASNet, the results from the original NASNet are given only in the sixth row in Table 1.

ResNet shows good performance on relatively simple, grayscale, or numeric images. MobileNet
performs well considering the computing time for relatively complex images with specific objects
and large classes, such as CIFAR-10 and CIFAR-100. NASNet performs best among the large models
regardless of the nature of the data. The results from the original models are comparable to the
transformed models. There is no clear superiority between the transformed and original models.

Finally we provide the computing time for running each model once in Table 2.
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Table 2: Computing time (in minutes) for running the model once under the described computing facilities

Model CIFAR-10 CIFAR-100 Fasion-MNIST SVHN
ResNet 53 72 52 93
MobileNet 45 36 40 68
ShuffleNet 47 29 24 86
VGGNet 135 101 119 193
WRN 120 146 148 206
NASNet (orgn) 450 500 551 499

5. Discussions

In the preceding sections, we have introduced six CNN models developed during ILSVRC. We then
applied them to four popular real image data sets. We have introduced the architectural features
of each model and modified the models to a similar size. The results of the prediction accuracy
demonstrate that NASNet is in fact recommended for various types of image data. When the GPU
specification is low, and fast learning is required, such as processing data in real-time, choosing a light
model such as MobileNet or ResNet seems a reasonable choice. The results in this paper may not be
generalized because there are numerous variants.
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