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ABSTRACT

A traditional approach to the prediction of
economic and financial variables takes the form of
statistical models to summarize past observations
and to project them into the envisioned future. Over
the past decade, an increasing number of
organizations has turned to the use of neural
networks. To date, however, many spheres of
interest still lack a systematic evaluation of the
statistical and neural approaches. One of these lies
in the prediction of corporate bond yields for Korea.

This paper reports on a comparative evaluation
of ARIMA models and neural networks in the
context of interest rate prediction. An additional
experiment relates to an integration of the two
methods. More specifically, the statistical model
serves as a filter by providing estimates which are
then used as input into the neural network models.
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PURPOSE

The prediction of economic and financial
variables is a critical task for many decision makers
in both industry and government. A traditional
approach to assist in this task has been the
development of statistical models to summarize past
observations and to project them into the envisioned
future. Over the past decade, an increasing number
of organizations has turned to the use of neural
networks. To date, however, many markets still lack
a systematic evaluation of the statistical and neural
approaches. One of these lies in the prediction of
corporate bond yields for Korea.

This paper reports on a comparative evaluation
of ARIMA models and neural networks (NN) in the
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context of interest rate prediction. In addition, a
separate experiment involves an integration of the
two methods. More specifically, the statistical model
serves as a filter by producing estimates which were
then used as input into the neural network models.

In most countries, interest rates are determined
largely by the government rather than freely
exposed to market forces. This has been especially
true of Korea. After 1980, however, the government
has relaxed somewhat its tight grip on interest rates.
Consequently, the trajectory of interest rates has
been partly determined to a meaningful extent by
market forces. In this setting, a multivariate model
which employs macroeconomic data would appear
to hold promise as a predictive methodology (Azoff,
1994; etc.).

In this study, the exemplar of interest rates is
the yield for corporate bonds having a maturity of 3
years. This interest rate is predicted using 3 types of
approaches: ARIMA models, neural networks, and
an integrated structure using both types of methods.

METHODOLOGY

ARIMA model. A popular forecasting technique
lies in Autoregressive Integrated Moving Average
(ARIMA) models (Box and Jenkins, 1976). ARIMA
models assume that the variable used in the model
includes all the information. That is, an ARIMA
model uses only the previous values of the target
variable plus the current and previous values of an
external shock. A general form of the model
ARIMA(p,d,q) is as follows:

@(B)z, = J(B)V'z, = 6, + 6(B)a,

where,
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O(B)=1-6,B-6,B" —...— 0, B
Moreover, B"Z,= Z,., and a, is white noise.

This general ARIMA model was tailored for the
prediction of the target interest rate using the
MINITAB program.

Neural Network model. The study employed a
multi-layer perceptron neural network using the
backpropagation algorithm. The first layer is the
input layer, consisting of several nodes. Each input
node represents the time-delayed data vector of the
target variable (y.); that is, ye1, Yiz,..., Yup.

The general architecture is given in Figure 1.
This neural network model was implemented by
using the program NeuroShell 2 (Ward, 1993).

Integrated methods. The unit root test was used in
the preprocessing stage to check for stationarity
(Dickey, 1979). If the data was non-stationary, it
was transformed into a stationary series.

In the integrated method, the estimated value
from an ARIMA model was used as the input into a
neural network. In this way, the ARIMA model
served as a filter to attenuate the noise in the input
variable.

RESULTS

The case study involved the prediction of
month-end yields of Korean corporate bonds having
3 years’ maturity. The data series, denoted in this
paper as “IR”, covers the period from Jan. 1980 to
Aug. 1995,

Figure 2 is a time series plot of the data. As
suggested by the figure, the series was not stationary.
The unit root test confirmed this suspicion, as shown
in Table 1.

An approach to selecting the proper ARIMA
model is to employ information criteria such as the
Final Prediction Error (Akaike, 1969), the Akaike
Information Criterion (Akaike, 1974), the Bayesian
Information Criterion (Akaike, 1977; Schwarz,
1978; Rissanen, 1978), or Hannan & Quinn’s
Criterion (Hannan & Quinn, 1979). The ARIMA
model is chosen as the one that minimizes any of
these statistics. As shown in Table 2, the statistic for
ARIMA(1,1,0) is lower than those of the other
models  for each criterion. Consequently
ARIMAC(1,1,0) was selected as the statistical model.

In order to identify the appropriate neural
model, we varied the number of input nodes from 1
to 5. The learning phase consisted of 142 data points
and the testing phase of 40 points. The NN models
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used in this study may be classified into 3 types. The
first type, Model A, was a neural network model
with the raw data set (IR) which was non-stationary.

Table 3 shows the result of the NN models
tested. As shown in the table, the NN model with
four input nodes, representing the lagged variables
from y.; to yus had the lowest value of RMSE
during the test phase.

Model B involved the same neural nets but the
inputs took the form of the first differenced data
(DIR), which was stationary. As shown in Table 3,
the NN model with one input node, representing
time lag 1, yielded better predictions than the other
models. In this fashion, the best Model B structure
had the same lag as the best ARIMA model.

Model C embodied the integrated approach
using both ARIMA and NN models. In particular,
the output of the ARIMA(I,1,0) model was used as
input to the NN models. The predictive performance
is summarized in Table 4. The results were not
precisely as we expected.

Table 4 indicates that the performance of the
NN models was better than the performance of
ARIMA. Among NN models, the best performance
belonged to model B, the network with the first time
lagged input variable using stationary data. These
results were as expected.

The surprising result is that the integrated
model underperforms neural network models
working in isolation. It appears that the statistical
model eliminates too much information during the
filtering stage.

An ANOVA test is shown in Table 5. The
results confirm that differences in performance
among the ARIMA and NN models were significant.
However, a series of t-tests (not shown here)
indicates that the three neural models did not differ
significantly from ecach other in terms of their
predictive power.

FUTURE WORK

The univariate models utilized in this study
implicitly assume that the target variable is the only
important factor. In reality, however, many other
variables affect the trajectory of interest rates. Future
work will investigate more sophisticated models
using multivariate inputs and examine alternative
configurations for integrating predictive models.
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Figure 1. NN architecture.
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Figure 2-a. Korean corporate bond yield
years’ maturity.
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Figure 2-b. 1* differenced series.
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Table 1. Augmented Dickey-Fuller Unit Root Test on Interest Rate (IR).

Variable Critical Value ADF Test Statistic Comments**
IR 1% -4.0109 - 3.264195 Accept
5% -3.4352 atp=0.05
10% -3.1413
DIR* 1% -4.0111 -5.917628 Reject
5% -3.4353 atp=0.01
10% -3.1414

* DIR; = IR; - IRy.]
** - Null hypothesis of a unit root.

Table 2. The information criteria estimates for ARIMA identification.

MODEL MSE AIC FPE BIC HQ
ARIMA(1,1,0) 0.3929 -0.91147 0.40183 - 0.87544 - 0.89686
ARIMA(2,1,0) 0.3948 - 0.89529 0.40826 -0.84124 - 0.87970
ARIMA(0,1,1) 0.3997 - 0.89431 0.40878 -0.85829 -0.87970
ARIMA(0,1,2) 0.3970 - 0.88973 0.41053 -0.83569 - 0.86781
ARIMA(1,1,1) 0.3947 - 0.89554 0.40816 - 0.84150 -0.87362
ARIMA(2,1,1) 0.3967 -0.87912 0.41473 - 0.80706 - 0.84989
ARIMA(1,1,2) 0.4029 - 0.86361 0.42121 -0.79156 - 0.83439

Note: MSE denotes the Mean Square Error; AIC the Akaike Information Criterion; FPE the Final Prediction Error; and HQ
the criterion by Hannan & Quinn.

Table 3. RMSE of forecasts by several types of neural network models
(test period covers May 92 - Aug. 95).

Input layer NN - Model A NN - Modei B NN - Model C
Time Lag (1) 0.601931 0.549891 0.806655
Time Lags (1) - (2) 0.559010 0.552606 0.845731
Time Lags (1) - (3) 0.563978 0.561493 0.862840
Time Lags (1) - (4) 0.556437 0.556890 0.807751
Time Lags (1) - (5) 0.57052 0.562173 0.810724

Recommended Model Time Lags (1) - (4) Time Lag (1) Time Lag (1)

Table 4. Comparison of prediction performance for ARIMA and NN models.

Model NN - Model A NN - Model B NN- Model C ARIMA(1,1,0)

RMSE 0.556437 0.549891 0.806655 1.851802

Table 5. 1-way ANOVA for the results in Table 4.

--- ONEWAY ---- -

Variable B (forecasting error)

By Variable A (model type)
Analysis of Variance
Sum of Mean F F
Source D.F. Squares Squares Ratio Prob.
Between Groups 3 28.1221 9.3740 10.3000 .0000
Within Groups 153 139.2448 .9101
Total 156 167.3669
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