• Title/Summary/Keyword: network tomography

Search Result 103, Processing Time 0.033 seconds

Estimation of the OD Traffic Intensities in Dynamic Routing Network: Routing-Independent Tomography

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.795-804
    • /
    • 2003
  • In this article, a tomography for the estimation of the origin-destination(OD) traffic intensities in dynamic routing network is considered. Vardi(1996)'s approach based on fixed route is not directly applicable to dynamic routing protocols, which arises from the fact that we cannot access the route at every observation time. While it uses link-wise traffics as the observations, the proposed method considers the triple of ingress/outgress/relayed traffics data at each node so that we can transform the problem into a routing-independent tomography. An EM algorithm for implementation and some simulated experiments are provided.

Front Points Tracking in the Region of Interest with Neural Network in Electrical Impedance Tomography

  • Seo, K.H.;Jeon, H.J.;Kim, J.H.;Choi, B.Y.;Kim, M.C.;Kim, S.;Kim, K.Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.118-121
    • /
    • 2003
  • In the conventional boundary estimation in EIT (Electrical Impedance Tomography), the interface between anomalies and background is expressed in usual as Fourier series and the boundary is reconstructed by obtaining the Fourier coefficients. This paper proposes a method for the boundary estimation, where the boundary of anomaly is approximated as the interpolation of front points located discretely along the boundary and is imaged by tracking the points in the region of interest. In the solution to the inverse problem to estimate the front points, the multi-layer neural network is introduced. For the verification of the proposed method, numerical experiments are conducted and the results indicate a good performance.

  • PDF

Estimating aquifer location using deep neural network with electrical impedance tomography

  • Sharma, Sunam Kumar;Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.982-990
    • /
    • 2020
  • Groundwater is essential source of the freshwater. Groundwater is stored in the body of the rocks or sediments, called aquifer. Finding an aquifer is a very important part of the geophysical survey. The best method to find the aquifer is to make a borehole. Single borehole is not a suitable method if the aquifer is not located in the borehole drilled area. To overcome this problem, a cross borehole method is used. Using a cross borehole method, we can estimate aquifer location more precisely. Electrical impedance tomography is use to estimate the aquifer location inside the subsurface using the cross borehole method. Electrodes are placed inside each boreholes and area between these boreholes are analysed. An aquifer is a non-uniform structure with complex shape which can represented by the truncated Fourier series. Deep neural network is evaluated as an inverse problem solver for estimating the aquifer boundary coefficients.

The Estimation of the Target Position and Size Using Multi-layer Neural Network in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 다층 신경회로망을 이용한 표적의 위치와 크기 추정)

  • Kim, Ji-Hoon;Kim, Chan-Yong;Cho, Tae-Hyun;Lee, In-Soo
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.35-41
    • /
    • 2018
  • Electrical impedance tomography (EIT) is a kind of nondestructive testing technique that obtains the internal resistivity distribution from the voltages measured at the electrodes located outside the area of interest. However, an image reconstruction problem in EIT has innate non-linearity and ill-posedness, so that it is difficult to obtain satisfactory reconstructed results. In general, a neural network can efficiently model the input and output relationships of a non-linear system. This paper proposes a method for estimating the position and size of a circular target using a multi-layer neural network. To verify the performance of the proposed method, neural network was trained and various computer simulations were performed and satisfactory performance was verified.

Generation of contrast enhanced computed tomography image using deep learning network

  • Woo, Sang-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.41-47
    • /
    • 2019
  • In this paper, we propose a application of conditional generative adversarial network (cGAN) for generation of contrast enhanced computed tomography (CT) image. Two types of CT data which were the enhanced and non-enhanced were used and applied by the histogram equalization for adjusting image intensities. In order to validate the generation of contrast enhanced CT data, the structural similarity index measurement (SSIM) was performed. Prepared generated contrast CT data were analyzed the statistical analysis using paired sample t-test. In order to apply the optimized algorithm for the lymph node cancer, they were calculated by short to long axis ratio (S/L) method. In the case of the model trained with CT data and their histogram equalized SSIM were $0.905{\pm}0.048$ and $0.908{\pm}0.047$. The tumor S/L of generated contrast enhanced CT data were validated similar to the ground truth when they were compared to scanned contrast enhanced CT data. It is expected that advantages of Generated contrast enhanced CT data based on deep learning are a cost-effective and less radiation exposure as well as further anatomical information with non-enhanced CT data.

A study on estimating the interlayer boundary of the subsurface using a artificial neural network with electrical impedance tomography

  • Sharma, Sunam Kumar;Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.650-663
    • /
    • 2021
  • Subsurface topology estimation is an important factor in the geophysical survey. Electrical impedance tomography is one of the popular methods used for subsurface imaging. The EIT inverse problem is highly nonlinear and ill-posed; therefore, reconstructed conductivity distribution suffers from low spatial resolution. The subsurface region can be approximated as piece-wise separate regions with constant conductivity in each region; therefore, the conductivity estimation problem is transformed to estimate the shape and location of the layer boundary interface. Each layer interface boundary is treated as an open boundary that is described using front points. The subsurface domain contains multi-layers with very complex configurations, and, in such situations, conventional methods such as the modified Newton Raphson method fail to provide the desired solution. Therefore, in this work, we have implemented a 7-layer artificial neural network (ANN) as an inverse problem algorithm to estimate the front points that describe the multi-layer interface boundaries. An ANN model consisting of input, output, and five fully connected hidden layers are trained for interlayer boundary reconstruction using training data that consists of pairs of voltage measurements of the subsurface domain with three-layer configuration and the corresponding front points of interface boundaries. The results from the proposed ANN model are compared with the gravitational search algorithm (GSA) for interlayer boundary estimation, and the results show that ANN is successful in estimating the layer boundaries with good accuracy.

Boundary estimation in electrical impedance tomography with multi-layer neural networks

  • Kim, Jae-Hyoung;Jeon, Hae-Jin;Choi, Bong-Yeol;Lee, Seung-Ha;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.40-45
    • /
    • 2004
  • This work presents a boundary estimation approach in electrical impedance imaging for binary-mixture fields based on a parallel structured multi-layer neural network. The interfacial boundaries are expressed with the truncated Fourier series and the unknown Fourier coefficients are estimated with the parallel structure of multi-layer neural network. Results from numerical experiments shows that the proposed approach is insensitive to the measurement noise and has a strong possibility in the visualization of binary mixtures for a real time monitoring.

  • PDF

AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS

  • Ryang, Yong Joon
    • Korean Journal of Mathematics
    • /
    • v.4 no.1
    • /
    • pp.7-16
    • /
    • 1996
  • The optimization problems with quadratic constraints often appear in various fields such as network flows and computer tomography. In this paper, we propose an algorithm for solving those problems and prove the convergence of the proposed algorithm.

  • PDF

Tomography Reconstruction of Ionospheric Electron Density with Empirical Orthonormal Functions Using Korea GNSS Network

  • Hong, Junseok;Kim, Yong Ha;Chung, Jong-Kyun;Ssessanga, Nicholas;Kwak, Young-Sil
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.7-17
    • /
    • 2017
  • In South Korea, there are about 80 Global Positioning System (GPS) monitoring stations providing total electron content (TEC) every 10 min, which can be accessed through Korea Astronomy and Space Science Institute (KASI) for scientific use. We applied the computerized ionospheric tomography (CIT) algorithm to the TEC dataset from this GPS network for monitoring the regional ionosphere over South Korea. The algorithm utilizes multiplicative algebraic reconstruction technique (MART) with an initial condition of the latest International Reference Ionosphere-2016 model (IRI-2016). In order to reduce the number of unknown variables, the vertical profiles of electron density are expressed with a linear combination of empirical orthonormal functions (EOFs) that were derived from the IRI empirical profiles. Although the number of receiver sites is much smaller than that of Japan, the CIT algorithm yielded reasonable structure of the ionosphere over South Korea. We verified the CIT results with NmF2 from ionosondes in Icheon and Jeju and also with GPS TEC at the center of South Korea. In addition, the total time required for CIT calculation was only about 5 min, enabling the exploration of the vertical ionospheric structure in near real time.

Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system

  • Kim, Kyuseok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2341-2347
    • /
    • 2021
  • Because single-photon emission computed tomography (SPECT) is one of the widely used nuclear medicine imaging systems, it is extremely important to acquire high-quality images for diagnosis. In this study, we designed a super-resolution (SR) technique using dense block-based deep convolutional neural network (CNN) and evaluated the algorithm on real SPECT phantom images. To acquire the phantom images, a real SPECT system using a99mTc source and two physical phantoms was used. To confirm the image quality, the noise properties and visual quality metric evaluation parameters were calculated. The results demonstrate that our proposed method delivers a more valid SR improvement by using dense block-based deep CNNs as compared to conventional reconstruction techniques. In particular, when the proposed method was used, the quantitative performance was improved from 1.2 to 5.0 times compared to the result of using the conventional iterative reconstruction. Here, we confirmed the effects on the image quality of the resulting SR image, and our proposed technique was shown to be effective for nuclear medicine imaging.