• Title/Summary/Keyword: network throughput

Search Result 1,544, Processing Time 0.029 seconds

Assessing Throughput and Availability based on Hierarchical Clustering in Wireless Sensor Networks (계층적 클러스터링을 기반으로 하는 무선 센서 네트워크의 Throughput 과 Availability 평가)

  • Lee Jun-Hyuk;Oh Young-Hwan
    • Journal of Applied Reliability
    • /
    • v.5 no.4
    • /
    • pp.465-486
    • /
    • 2005
  • A unreliable network system results in unsatisfied performance. A performance criterion of a network is throughput and availability. One of the most compelling technological advances of this decade has been the advent of deploying wireless networks of heterogeneous smart sensor nodes for complex information gathering tasks, The advancement and popularization of wireless communication technologies make more efficiency to network devices with wireless technology than with wired technology. Recently, the research of wireless sensor network has been drawing much attentions. In this paper, We evaluate throughput and availability of wireless sensor network, which have hierarchical structure based on clustering and estimate the maximum hroughput, average throughput and availability of the network considering several link failure patterns likely to happen at a cluster consisted of sensor nodes. Also increasing a number of sensor nodes in a cluster, We analysis the average throughput and availability of the network.

  • PDF

Throughput maximization for underlay CR multicarrier NOMA network with cooperative communication

  • Manimekalai, Thirunavukkarasu;Joan, Sparjan Romera;Laxmikandan, Thangavelu
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.846-858
    • /
    • 2020
  • The non-orthogonal multiple access (NOMA) technique offers throughput improvement to meet the demands of the future generation of wireless communication networks. The objective of this work is to further improve the throughput by including an underlay cognitive radio network with an existing multi-carrier NOMA network, using cooperative communication. The throughput is maximized by optimal resource allocation, namely, power allocation, subcarrier assignment, relay selection, user pairing, and subcarrier pairing. Optimal power allocation to the primary and secondary users is accomplished in a way that target rate constraints of the primary users are not affected. The throughput maximization is a combinatorial optimization problem, and the computational complexity increases as the number of users and/or subcarriers in the network increases. To this end, to reduce the computational complexity, a dynamic network resource allocation algorithm is proposed for combinatorial optimization. The simulation results show that the proposed network improves the throughput.

FENC: Fast and Efficient Opportunistic Network Coding in wireless networks

  • Pahlavani, Peyman;Derhami, Vali;Bidoki, Ali Mohammad Zareh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.52-67
    • /
    • 2011
  • Network coding is a newly developed technology that can cause considerable improvements in network throughput. COPE is the first network coding approach for wireless mesh networks and it is based on opportunistic Wireless Network Coding (WNC). It significantly improves throughput of multi-hop wireless networks utilizing network coding and broadcast features of wireless medium. In this paper we propose a new method, called FENC, for opportunistic WNC that improves the network throughput. In addition, its complexity is lower than other opportunistic WNC approaches. FENC utilizes division and conquer method to find an optimal network coding. The numerical results show that the proposed opportunistic algorithm improves the overall throughput as well as network coding approach.

Network Coding-based Maximum Lifetime Algorithm for Sliding Window in WSNs

  • Sun, Baolin;Gui, Chao;Song, Ying;Chen, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1298-1310
    • /
    • 2019
  • Network coding (NC) is a promising technology that can improve available bandwidth and packet throughput in wireless sensor networks (WSNs). Sliding window is an improved technology of NC, which is a supplement of TCP/IP technology and can improve data throughput and network lifetime on WSNs. This paper proposes a network coding-based maximum lifetime algorithm for sliding window in WSNs (NC-MLSW) which improves the throughput and network lifetime in WSN. The packets on the source node are sent on the WSNs. The intermediate node encodes the received original packet and forwards the newly encoded packet to the next node. Finally, the destination node decodes the received encoded data packet and recovers the original packet. The performance of the NC-MLSW algorithm is studied using NS2 simulation software and the network packet throughput, network lifetime and data packet loss rate were evaluated. The simulations experiment results show that the NC-MLSW algorithm can obviously improve the network packet throughput and network lifetime.

The Design and Implementation of Network Measurement System for Mobile Platforms (모바일 플랫폼을 위한 네트워크 환경 측정 시스템 설계 및 구현)

  • Kim, Kanghee;Yeo, Jinjoo;Kim, JinHyuk;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.35-46
    • /
    • 2013
  • As a rapid increase of mobile network usage, many studies on solution for network traffic's demand problem have been done. Especially network environment measurement area provides basis for solving network traffic's demand problem by finding causes of problems through accurate network analysis. However, as increase of demand for smartphone, we should consider effects of mobile platform's property measuring mobile network. In this paper, we design a network traffic measurement system considering mobile platform. Through the information from packets, this system calculates packet transmission delay and throughput. We minimize computation cost required for a mobile device that is a client in this system. When fully using network resources, we found that Wi-Fi has shorter transmission delay, higher maximum throughput and lower loss rate than 3G, Android has shorter transmission delay and higher maximum throughput than iOS, and UDP has longer transmission delay and higher maximum throughput through this system.

Intra-session Network Coding for Improving Throughput in Multi-Radio Multi-Channel Multi-Hop Wireless Networks (멀티라디오/멀티채널 멀티 홉 무선 네트워크에서 처리율 향상을 위한 인트라세션 네트워크 코딩)

  • Seo, Kyeong-Su;Yoon, Won-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.10
    • /
    • pp.29-34
    • /
    • 2011
  • We present a network coding scheme which is designed for improving throughput in multi-hop wireless network with multi-radio multi-channel. The co-channel interference and unreliability of wireless transmissions cause the wireless network to reduce throughput. In wireless network, multi-radio multi-channel technology shows benefit to cut down channel interferences and contentions. And network coding can reduce the complexity of scheduling and improve throughput by increasing usage of links in wireless network. In this paper, we propose a method of channel assignment and transmission scheduling in intra-session network coding that efficiently improve throughput for multi-hop wireless network by using mathematical modeling and linear programming. Moreover, we evaluate the performance of the intra-session network coding scheme by using AMPL with CPLEX. The simulation results show that intra-session network coding can achieve better throughput than traditional routing.

Throughput analysis of RTP-TCP coexistence network (RTP-TCP가 공존하는 네트워크의 Throughput 분석)

  • 김석후;채현석;최명렬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10e
    • /
    • pp.682-684
    • /
    • 2002
  • 본 논문에서는 RTP와 TCP가 공존하는 네트워크에서 RTP 패킷의 크기, interval,전송라인의 대역폭, Queue의 크기, delay의 변화에 따라 throughput의 특징에 대하여 알아보기 위해서 ns(network simulator)를 이용하여 RTP, TCP_Reno, TCP_Vegas로 구성된 네트워크를 구성하고 시뮬레이션을 통해서 throughput의 특징 및 원인을 분석했다.

  • PDF

Optimal Design of Contending-type MAC Scheme for Wireless Passive Sensor Networks (무선 수동형 센서 망을 위한 경합형 MAC 방식의 최적 설계)

  • Choi, Cheon Won;Seo, Heewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.29-36
    • /
    • 2016
  • A wireless passive sensor network is a network which, by letting separate RF sources supply energy to sensor nodes, is able to live an eternal life without batteries. Against expectations about an eternal life, however, a wireless passive sensor network still has many problems; scarcity of energy, non-simultaneity of energy reception and data transmission and inefficiency in resource allocation. In this paper, we focus on a wireless passive sensor network providing a packet service which is tolerable to packet losses but requires timely delivery of packets. Perceiving the practical constraints, we then consider a contending-type MAC scheme, rooted in framed and slotted ALOHA, for supporting many sensor nodes to deliver packets to a sink node. Next, we investigate the network-wide throughput achieved by the MAC scheme when the packets transmitted by geographically scattered sensor nodes experience path losses hence capture phenomena. Especially, we derive an exact formula of network-wide throughput in a closed form when 2 sensor nodes reside in the network. By controlling design parameters, we finally optimize the contending-type MAC scheme as to attain the maximum network-wide throughput.

Throughput Scaling Law of Hybrid Erasure Networks Based on Physical Model (물리적 모델 기반 혼합 소거 네트워크의 용량 스케일링 법칙)

  • Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • The benefits of infrastructure support are shown by analyzing a throughput scaling law of an erasure network in which multiple relay stations (RSs) are regularly placed. Based on suitably modeling erasure probabilities under the assumed network, we show our achievable network throughput in the hybrid erasure network. More specifically, we use two types of physical models, a exponential decay model and a polynomial decay model. Then, we analyze our achievable throughput using two existing schemes including multi-hop transmissions with and without help of RSs. Our result indicates that for both physical models, the derived throughput scaling law depends on the number of nodes and the number of RSs.

Worst-case Guaranteed Scheduling Algorithm for HR-WPAN (HR-WPAN을 위한 Worst-case Guaranteed Scheduling Algorithm)

  • Kim, Je-Min;Lee, Jong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.270-276
    • /
    • 2007
  • The proposed LDS(Link-status Dependent Scheduling) algorithm in HR-WPAN(High Rate-Wireless Personal Area Network) up to now aims at doing only throughput elevation of the whole network, when the crucial device is connected with worst-link relatively, throughput of this device becomes aggravation. The proposed the WGS(Worst-case Guaranteed Scheduling) algorithm in this paper guarantees throughput of the device which is connected with worst-link in a certain degree as maintaining throughput of all devices identically even if a link-status changes, decreases delay of the whole network more than current LDS algorithm. Therefore proposed WGS algorithm in this paper will be useful in case of guaranteeing throughput of a device which is connected worst-link in a certain degree in a design of HR-WPAN hereafter.