DOI QR코드

DOI QR Code

Throughput Scaling Law of Hybrid Erasure Networks Based on Physical Model

물리적 모델 기반 혼합 소거 네트워크의 용량 스케일링 법칙

  • Shin, Won-Yong (Department of Computer Science and Engineering, Dankook University)
  • Received : 2013.11.12
  • Accepted : 2013.12.19
  • Published : 2014.01.31

Abstract

The benefits of infrastructure support are shown by analyzing a throughput scaling law of an erasure network in which multiple relay stations (RSs) are regularly placed. Based on suitably modeling erasure probabilities under the assumed network, we show our achievable network throughput in the hybrid erasure network. More specifically, we use two types of physical models, a exponential decay model and a polynomial decay model. Then, we analyze our achievable throughput using two existing schemes including multi-hop transmissions with and without help of RSs. Our result indicates that for both physical models, the derived throughput scaling law depends on the number of nodes and the number of RSs.

다수의 중계기가 균등하게 분포된 무선 소거 네트워크의 용량 스케일링 법칙을 분석함으로써 인프라 구조 사용시 이득을 보인다. 가정하는 네트워크 하에서 소거 확률을 적절히 모델링함에 근거하여, 혼합 소거 네트워크에서 취득 가능한 네트워크 용량을 보인다. 보다 구체적으로, 지수 감쇠 모델 및 다항 감쇠 모델 이렇게 두 가지 물리적 모델을 사용한다. 중계기 도움이 없는 다중 홉 전송, 중계기 도움을 받는 다중 홉 전송 이렇게 두 가지 존재하는 기술을 사용하여 취득 용량을 분석한다. 유도된 용량 스케일링 법칙은 두 가지 물리적 모델 모두에 대해 노드 수 및 중계기의 수에 의존함을 확인한다.

Keywords

References

  1. P. Gupta and P. R. Kumar, "The capacity of wireless networks," IEEE Trans. Inf. Theory, vol. 46, pp. 388-404, Mar. 2000. https://doi.org/10.1109/18.825799
  2. A. Ozgur, O. Leveque, and D. N. C. Tse, "Hierarchical cooperation achieves optimal capacity scaling in ad hoc networks," IEEE Trans. Inf. Theory, vol. 53, pp. 3549-3572, Oct. 2007. https://doi.org/10.1109/TIT.2007.905002
  3. B. Liu, Z. Liu, and D. Towsley, "On the capacity of hybrid wireless networks," in Proc. INFOCOM, Mar. 2003, pp. 1543-1552.
  4. A. Zemlianov and G. de Veciana, "Capacity of ad hoc wireless networks with infrastructure support," IEEE J. Select. Areas Commun., vol. 23, no. 3, pp. 657-667, Mar. 2005. https://doi.org/10.1109/JSAC.2004.842536
  5. W.-Y. Shin, S.-W. Jeon, N. Devroye, M. H. Vu, S.-Y. Chung, Y. H. Lee, and V. Tarokh, "Improved capacity scaling in wireless networks with infrastructure," IEEE Trans. Inf. Theory, vol. 57, pp. 5088-5102, Aug. 2011. https://doi.org/10.1109/TIT.2011.2158881
  6. A. Dana, R. Gowaikar, and B. Hassibi, "Capacity of wireless erasure networks," IEEE Trans. Inf. Theory, vol. 32, pp. 789-804, Mar. 2006.
  7. B. Smith, P. Gupta, and S. Vishwanath, "Routing is orderoptimal in broadcast erasure networks with interference," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), June 2007, pp. 141-145.
  8. B. Smith, P. Gupta, and S. Vishwanath, "Routing versus network coding in erasure networks with broadcast and interference constraints," in Proc. IEEE Military Commun. Conf. (MILCOM), Oct. 2007, pp. 1-5.
  9. B. Swith and S. Vishwanath, "Asymptotic transport capacity of wireless erasure networks," in Proc. 2006 Allerton Conf. on Commun., Control, and Computing.
  10. L.-L. Xie and P. R. Kumar, "A network information theory for wireless communication: Scaling laws and optimal operating," IEEE Trans. Inf. Theory, vol. 50, pp. 748-767, May 2004. https://doi.org/10.1109/TIT.2004.826631
  11. M. Franceschetti, O. Dousse, D. N. C. Tse, and P. Thiran, "Closing the gap in the capacity of wireless networks via percolation theory," IEEE Trans. Inf. Theory, vol. 53, pp. 1009-1018, Mar. 2007. https://doi.org/10.1109/TIT.2006.890791