• Title/Summary/Keyword: network lifetime

Search Result 674, Processing Time 0.035 seconds

Design and Verification using Energy Consumption Model of Low Power Sensor Network for Monitoring System for Elderly Living Alone (독거노인 모니터링 시스템을 위한 저전력 센서 네트워크 설계 및 에너지 소모 모델을 이용 검증)

  • Kim, Yong-Joong;Jung, Kyung-Kwon
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.39-46
    • /
    • 2009
  • Wireless sensor networks consist of small, autonomous devices with wireless networking capabilities. In order to further increase the applicability in real world applications, minimizing energy consumption is one of the most critical issues. Therefore, accurate energy model is required for the evaluation of wireless sensor networks. In this paper we analyze the power consumption for wireless sensor networks. To develop the power consumption model, we have measured the power characteristics of commercial Kmote node based on TelosB platforms running TinyOS. Based on our model, the estimated lifetime of a battery powered sensor node can use about 6.9 months for application of human detection using PIR sensors. This result indicates that sensor nodes can be used in a monitoring system for elderly living alone.

  • PDF

Performance Analysis of Multiple-Hop Wireless Body Area Network

  • Hiep, Pham Thanh;Hoang, Nguyen Huy;Kohno, Ryuji
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.419-427
    • /
    • 2015
  • There have been increases in the elderly population worldwide, and this has been accompanied by rapid growth in the health-care market, as there is an ongoing need to monitor the health of individuals. Wireless body area networks (WBANs) consist of wireless sensors attached on or inside the human body to monitor vital health-related problems, e.g., electrocardiograms (ECGs), electroencephalograms (EEGs), and electronystagmograms (ENGs). With WBANs, patients' vital signs are recorded by each sensor and sent to a coordinator. However, because of obstructions by the human body, sensors cannot always send the data to the coordinator, requiring them to transmit at higher power. Therefore, we need to consider the lifetime of the sensors given their required transmit power. In the IEEE 802.15.6 standard, the transmission topology functions as a one-hop star plus one topology. In order to obtain a high throughput, we reduce the transmit power of the sensors and maintain equity for all sensors. We propose the multiple-hop transmission for WBANs based on the IEEE 802.15.6 carrier-sense multiple-access with collision avoidance (CSMA/CA) protocol. We calculate the throughput and variance of the transmit power by performing simulations, and we discuss the results obtained using the proposed theorems.

Overload Surge Investigation Using CFD Data

  • Flemming, Felix;Foust, Jason;Koutnik, Jiri;Fisher, Richard K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.315-323
    • /
    • 2009
  • Pressure oscillations triggered by the unstable interaction of dynamic flow features of the hydraulic turbine with the hydraulic plant system - including the electrical design - can at times reach significant levels and could lead to damage of plant components or could reduce component lifetime significantly. Such a problem can arise for overload as well as for part load operation of the turbine. This paper discusses an approach to analyze the overload high pressure oscillation problem using computational fluid dynamic (CFD) modeling of the hydraulic machine combined with a network modeling technique of the hydraulic system. The key factor in this analysis is the determination of the overload vortex rope volume occurring within the turbine under the runner which is acting as an active element in the system. Two different modeling techniques to compute the flow field downstream of the runner will be presented in this paper. As a first approach, single phase flow simulations are used to evaluate the vortex rope volume before moving to more sophisticated modeling which incorporates two phase flow calculations employing cavitation modeling. The influence of these different modeling strategies on the simulated plant behavior will be discussed.

Design and Implementation of A Location-based Energy-Efficient Routing Protocol using Quantity of Energy Consumed (에너지 사용량을 이용한 위치 기반 에너지 효율적인 라우팅 프로토콜 설계 및 구현)

  • Jang, You-Jin;Kim, Yong-Ki;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Recently, wireless sensor networks(WSNs) technology has been considered as one of the most critical issues in the ubiquitous computing age. The sensor nodes have limited battery power, so they should consume low energy through their operation for the long-lasting lifetime. Therefore, it is essential to use energy efficient routing protocol. For this, we propose a location-based energy-efficient routing protocol which constructs the energy efficient route by considering the quantity of Energy consumed. In addition, we propose a route reconstruction algorithm to handle the disconnection of message transmission. Finally, we show from performance analysis using TOSSIM that our protocol outperforms the existing location based routing protocols in terms of energy efficiency.

A Study on the Intrusion Detection System's Nodes Scheduling Using Genetic Algorithm in Sensor Networks (센서네트워크에서 유전자 알고리즘을 이용한 침입탐지시스템 노드 스케줄링 연구)

  • Seong, Ki-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2171-2180
    • /
    • 2011
  • Security is a significant concern for many sensor network applications. Intrusion detection is one method of defending against attacks. However, standard intrusion detection techniques are not suitable for sensor networks with limited resources. In this paper, propose a new method for selecting and managing the detect nodes in IDS(intrusion detection system) for anomaly detection in sensor networks and the node scheduling technique for maximizing the IDS's lifetime. Using the genetic algorithm, developed the solutions for suggested optimization equation and verify the effectiveness of proposed methods by simulations.

An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 계층적 클러스터링 알고리즘)

  • Cha, Si-Ho;Lee, Jong-Eon;Choi, Seok-Man
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • Clustering allows hierarchical structures to be built on the nodes and enables more efficient use of scarce resources, such as frequency spectrum, bandwidth, and energy in wireless sensor networks (WSNs). This paper proposes a hierarchical clustering algorithm called EEHC which is more energy efficient than existing algorithms for WSNs, It introduces region node selection as well as cluster head election based on the residual battery capacity of nodes to reduce the costs of managing sensor nodes and of the communication among them. The role of cluster heads or region nodes is rotated among nodes to achieve load balancing and extend the lifetime of every individual sensor node. To do this, EEHC clusters periodically to select cluster heads that are richer in residual energy level, compared to the other nodes, according to clustering policies from administrators. To prove the performance improvement of EEHC, the ns-2 simulator was used. The results show that it can reduce the energy and bandwidth consumption for organizing and managing WSNs comparing it with existing algorithms.

A Cluster-based Routing Protocol with Energy Consumption Balance in Distributed Wireless Sensor Networks (분산 무선센서 네트워크의 클러스터-기반 에너지 소비 균형 라우팅 프로토콜)

  • Kim, Tae-Hyo;Ju, Yeon-Jeong;Oh, Ho-Suck;Kim, Min-Kyu;Jung, Yong-Bae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • In this paper, a cluster-based routing protocol in distributed sensor network is proposed, which enable the balanced energy consumption in the sensor nodes densely deployed in the sensor fields. This routing protocol is implemented based on clusters with hierarchical scheme. The clusters are formed by the closely located sensor nodes. A cluster node with maximum residual energy in the cluster, can be selected as cluster head node. In routing, one of the nodes in the intersection area between two clusters is selected as a relay-node and this method can extend the lifetime of all the sensor nodes in view of the balanced consumption of communication energy.

Dynamic Head Election Method For Energy-Efficient Cluster Reconfiguration In Wireless Sensor Networks (무선 센서망에서 에너지 효율적인 클러스터 재구성을 위한 동적 헤드 선출 방법)

  • Jo Yong-hyun;Lee Hyang-tack;Roh Byeong-hee;Yoo S.W.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11A
    • /
    • pp.1064-1072
    • /
    • 2005
  • For the efficient operation of sensor networks, it is very important to design sensor networks for sensors to utilize their energies in very effective ways. Cluster-based routing schemes such as LEACH can achieve their energy efficiencies by delivering data between cluster heads and sensor nodes. In those cluster-based schemes, cluster reconfiguration algorithm is one of the most critical issues to achieve longer operation lifetime of sensor networks. In this paper, we propose a new energy efficient cluster reconfiguration algorithm. Proposed method does not require any location or energy information of sensors, and can configure clusters with fair cluster regions such that all the sensors in a sensor network can utilize their energies equally. The performances of the proposed scheme have been compared with LEACH and LEACH-C.

Biologically Inspired Node Scheduling Control for Wireless Sensor Networks

  • Byun, Heejung;Son, Sugook;Yang, Soomi
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.506-516
    • /
    • 2015
  • Wireless sensor networks (WSNs) are generally comprised of densely deployed sensor nodes, which results in highly redundant sensor data transmissions and energy waste. Since the sensor nodes depend on batteries for energy, previous studies have focused on designing energy-efficient medium access control (MAC) protocols to extend the network lifetime. However, the energy-efficient protocols induce an extra end-to-end delay, and therefore recent increase in focus on WSNs has led to timely and reliable communication protocols for mission-critical applications. In this paper, we propose an energy efficient and delay guaranteeing node scheduling scheme inspired by biological systems, which have gained considerable attention as a computing and problem solving technique.With the identification of analogies between cellular signaling systems and WSN systems, we formulate a new mathematical model that considers the networking challenges of WSNs. The proposed bio-inspired algorithm determines the state of the sensor node, as required by each application and as determined by the local environmental conditions and the states of the adjacent nodes. A control analysis shows that the proposed bio-inspired scheme guarantees the system stability by controlling the parameters of each node. Simulation results also indicate that the proposed scheme provides significant energy savings, as well as reliable delay guarantees by controlling the states of the sensor nodes.

A New Volt/Var Control of Substation for Distribution Volt/Var Regulation (배전계통 전압/무효전력조정을 위한 새로운 전압/무효전력제어 방식)

  • Choi, Joon-Ho;Kim, Jae-Chul;Son, Hag-Sig;Im, Tae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.285-288
    • /
    • 2001
  • In this paper we proposed the on line volt/var control schemes of the load Tap Changer (LTC) transformer and shunt capacitor bank for distribution volt/var regulation. In the existing volt/var control of the distribution substation, the voltage of feeders and var of distribution systems is mainly controlled by the LTC transformer tap position and on/off status of the shunt capacitor. The LTC and shunt capacitor bank has discrete operation characteristics and therefore it is very difficult to control volt/var at the distribution networks within the satisfactory levels. Also there is limitation of the operation times of the LTC and shunt capacitor bank because it is affects on their functional lifetime. The proposed volt/var control algorithm determine an optimal tap position of LTC and on/off status of shunt capacitors at a distribution network with the multiple feeders. The mathematical equations of the proposed method are introduced. Simple case study was performed to verify the effectiveness of the proposed method.

  • PDF