• Title/Summary/Keyword: network computing

Search Result 3,180, Processing Time 0.034 seconds

Edge Computing Server Deployment Technique for Cloud VR-based Multi-User Metaverse Content (클라우드 VR 기반 다중 사용자 메타버스 콘텐츠를 위한 엣지 컴퓨팅 서버 배치 기법)

  • Kim, Won-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1090-1100
    • /
    • 2021
  • Recently, as indoor activities increase due to the spread of infectious diseases, the metaverse is attracting attention. Metaverse refers to content in which the virtual world and the real world are closely related, and its representative platform technology is VR(Virtual Reality). However, since VR hardware is difficult to access in terms of cost, the concept of streaming-based cloud VR has emerged. This study proposes a server configuration and deployment method in an edge network when metaverse content involving multiple users operates based on cloud VR. The proposed algorithm deploys the edge server in consideration of the network and computing resources and client location for cloud VR, which requires a high level of computing resources while at the same time is very sensitive to latency. Based on simulation, it is confirmed that the proposed algorithm can effectively reduce the total network traffic load regardless of the number of applications or the number of users through comparison with the existing deployment method.

5G MEC (Multi-access Edge Computing): Standardization and Open Issues (5G Multi-access Edge Computing 표준기술 동향)

  • Lee, S.I.;Yi, J.H.;Ahn, B.J.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.4
    • /
    • pp.46-59
    • /
    • 2022
  • The 5G MEC (Multi-access Edge Computing) technology offers network and computing functionalities that allow application services to improve in terms of network delay, bandwidth, and security, by locating the application servers closer to the users at the edge nodes within the 5G network. To offer its interoperability within various networks and user equipment, standardization of the 5G MEC technology has been advanced in ETSI, 3GPP, and ITU-T, primarily for the MEC platform, transport support, and MEC federation. This article offers a brief review of the standardization activities for 5G MEC technology and the details about the system architecture and functionalities developed accordingly.

Expansion Method Using Bridge Module in e-Textile Fabric Area Network (e-Textile Fabric Area Network에서 브릿지 노드를 이용한 네트워크 확장 방식)

  • Noh, KyeongJu;Lee, HyunSun;SunWoo, Jhon;Cho, Illyeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.179-180
    • /
    • 2009
  • 본 논문은 웨어러블 플랫폼 구성 기술로써 e-Textile Fabric Area Network (e-FAN) 시스템을 소개하고, e-FAN 시스템에서의 브릿지 노드를 이용한 네트워크 확장 방법을 제안한다. E-FAN 은 직물 소재의 제품에 센서, 엑츄에이터, 프로세서 등의 다양한 정보 처리 유닛이 전도성사로 연결되는 구성되는 네트워크이다. 본 논문은 이러한 e-FAN 시스템에서의 e-FAN 브릿지 노드 (e-FAN Bridge Node; eFANBN)을 활용한 네트워크 확장 방법을 제시한다. E-FAN 브릿지 노드를 활용한 네트워크 확장 방법을 통하여 다양한 종류의 전도성사를 통신 매질로 하는 네트워크 세그먼트를 통합하여 내고장성을 지원하는 네트워크로 확장한다.

Design and Prototyping of Partial Connection Manager for Mobile Computing Service (이동 컴퓨팅 서비스를 위한 부분 연결 관리자의 설계 및 프로토타입핑)

  • Kim, Pyeong-Jung;Yun, Seok-Hwan;Jin, Seong-Il
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1932-1940
    • /
    • 2000
  • We must solve problems caused by mobile computing environments for supporting efficient mobile computing services. The problem is the use of wireless medium having high error rates and low bandwidth, and the sudden network disconnection to reduce the power consumption of a mobile host and the cost of the network connection. For these problems, we proposed the architecture of the partial connection manager and designed and implemented that in this paper. In particular, The partial connection manager creates the limited number of mobile agents according to priority and sends them in parallel to server systems and combines results of them process rapidly the user request. By applying the proposed partial connection manager to the mobile computing services called cybermarket, we knew that the mobile agent technique could be suited to the mobile computing environment and overcome the partial connection problem caused by eh mobile computing environment.

  • PDF

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.

A Study on Measurement Parameters of Virtualized Resources on Cloud Computing Networks (클라우드 컴퓨팅 네트워크에서 가상화 장비 평가 항목 연구)

  • Lee, Wonhyuk;Park, Byungyeon;Kim, Seunghae;Kim, TaeYeon;Kim, Hyuncheol
    • Convergence Security Journal
    • /
    • v.14 no.7
    • /
    • pp.85-90
    • /
    • 2014
  • Cloud computing originated simply to request and execute the desired operation from the network of clouds. It means that an IT resource that provides a service using the Internet technology. It is getting the most attention in today's IT trends. In cloud computing networks, devices and data centers which are composed of the server, storage and application are connected over network. That is, data of computers in different physical locations are integrated using the virtualization technology to provide a service. Therefore cloud computing system is a key information resource, standardized methods and assessment system are required. In this paper, we aims to derive the parameters and information for research of technical standards stability evaluation method associated with various cloud computing equipment.

Design & Implementation of Thin-Client Architecture using Server Based Computing (서버 기반 컴퓨팅을 활용한 썬-클라이언트 아키텍쳐 설계 및 구현)

  • Song, Min-Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.5
    • /
    • pp.149-157
    • /
    • 2008
  • In the field of computing service, there is a copernican revolution indebted to development of network & computer technology. Computer system, which is set to mainframe in the 1960's, is advancing torwards to the paradigm of server based computing, so-called thin-client. In thin-client computing, network is the platform which is responsible for transfer of application, so that client execute application installed on server. It is also possible that each system share the computing resource connected with network. In this parer, we suggest component & distributed computing technology as a measn for the implementation of thin-client architecture hence, make the best use of COM(Component Object Model and PYRO(PYthon Remote Objects). We talk about the concept and mechanism of thin-client at the beginning, and propose the design of network architecture for the implementation thin-client.

  • PDF

Performance Evaluation of Interconnection Network in Microservers (마이크로서버의 내부 연결망 성능평가)

  • Oh, Myeong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.91-97
    • /
    • 2021
  • A microserver is a type of a computing server, in which two or more CPU nodes are implemented on a separate computing board, and a plurality of computing boards are integrated on a main board. In building a cluster system, the microserver has advantages in several points such as energy efficiency, area occupied, and ease of management compared to the existing method of mounting legacy servers in multiple racks. In addition, since the microserver uses a fast interconnection network between CPU nodes, performance improvement for data transfers is expected. The proposed microserver can mount a total of 16 computing boards with 4 CPU nodes on the main board, and uses Serial-RapidIO (SRIO) as an interconnection network. In order to analyze the performance of the proposed microserver in terms of the interconnection network which is a core performance issue of the microserver, we compare and quantify the performance of commercial microservers. As a result of the test, it showed up to about 7 times higher bandwidth improvement when transmitting data using the interconnection network. In addition, with CloudSuite benchmark programs used in actual cloud computing, maximum 60% reduction in execution time was obtained compared to commercial microservers with similar CPU performance specification.

Quantum Packet for the Next Generation Network/ISDN3

  • Lam, Ray Y. W.;Chan, Henry C. B.;Chen, Hui;Dillon, Tharam S.;Li, Victor O. K.;Leung, Victor C. M.
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.316-330
    • /
    • 2008
  • This paper proposes a novel method for transporting various types of user traffic effectively over the next generation network called integrated services digital network 3 (ISDN3) (or quantum network) using quantum packets. Basically, a quantum packet comprises one or more 53-byte quanta as generated by a "quantumization" process. While connection-oriented traffic is supported by fixed-size quantum packets each with one quantum to emulate circuit switching, connectionless traffic (e.g., IP packets and active packets) is carried by variable-size quantum packets with multiple quanta to support store-and-forward switching/routing. Our aim is to provide frame-like or datagram-like services while enabling cell-based multiplexing. The quantum packet method also establishes a flexible and extensible framework that caters for future packetization needs while maintaining backward compatibility with ATM. In this paper, we discuss the design of the quantum packet method, including its format, the "quantumization" process, and support for different types of user traffic. We also present an analytical model to evaluate the consumption of network resources (or network costs) when quantum packets are employed to transfer loss-sensitive data using three different approaches: cut-through, store-and-forward and ideal. Close form mathematical expressions are obtained for some situations. In particular, in terms of network cost, we discover two interesting equivalence phenomena for the cut-through and store-and-forward approaches under certain conditions and assumptions. Furthermore, analytical and simulation results are presented to study the system behavior. Our analysis provides valuable insights into the. design of the ISDN3/quantum network.

An Overview of Mobile Edge Computing: Architecture, Technology and Direction

  • Rasheed, Arslan;Chong, Peter Han Joo;Ho, Ivan Wang-Hei;Li, Xue Jun;Liu, William
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4849-4864
    • /
    • 2019
  • Modern applications such as augmented reality, connected vehicles, video streaming and gaming have stringent requirements on latency, bandwidth and computation resources. The explosion in data generation by mobile devices has further exacerbated the situation. Mobile Edge Computing (MEC) is a recent addition to the edge computing paradigm that amalgamates the cloud computing capabilities with cellular communications. The concept of MEC is to relocate the cloud capabilities to the edge of the network for yielding ultra-low latency, high computation, high bandwidth, low burden on the core network, enhanced quality of experience (QoE), and efficient resource utilization. In this paper, we provide a comprehensive overview on different traits of MEC including its use cases, architecture, computation offloading, security, economic aspects, research challenges, and potential future directions.