• Title/Summary/Keyword: neo-fructooligosaccharide

Search Result 2, Processing Time 0.017 seconds

Effects of Morphology and Rheology on Neo-fructosyltransferase Production by Penicillium citrinum

  • Lim, Jung-Soo;Lee, Jong-Ho;Kim, Jung-Mo;Park, Seung-Won;Kim, Seung-Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.100-104
    • /
    • 2006
  • In this study, we investigated the relationship between the morphology and the rheological properties of Penicillium citrinum to improve the production of neo-fructosyltransferase (neo-FTase). In a 2.5 L bioreactor culture of P. citrinum, it was observed that agitation speed and aeration rate had significant effects on the production of neo-FTase and that maximum cell mass and neo-FTase production obtained at 500 rpm and 1.5vvm were 8.14 g/L and $53.2{\times}10^{-3} U/mL$, respectively. Cell mass and neo-FTase production increased to 91.53 and 25.17%, respectively. In the morphology and rheology studies, P. citrinum showed a typical pellet morphology that was explained by a shaving mechanism; this phenomenon was significantly affected by carbon sources. The rheology of neo-FTase fermentation by P. citrinum was dependent on cell growth and fungal morphology.

Immobilization of Penicillium citrinum by Entrapping Cells in Calcium Alginate for the Production of Neo-Fructooligosaccharides

  • Lim, Jung-Soo;Park, Seung-Won;Lee, Jin-Won;Oh, Kyeong-Keon;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1317-1322
    • /
    • 2005
  • This work describes neo-fructooligosaccharides (neo-FOSs) production using the immobilized mycelia of Penicillium citrinum. Some critical factors were evaluated to optimize maximal production of neo-FOS. Optimal alginate and cell concentrations were determined to be $1.96\%$ alginate and $7.17\%$ cell, respectively, by statistical analysis. The optimal concentration of $CaCl_{2}$, which is related to bead stability, was determined to be 2 M. It was possible to increase the neo-FOS production by adding 15 units of glucose oxidase to the batch reaction. By co-immobilizing cells and glucose oxidase, neoFOS productivity increased $123\%$ compared with the whole-cell immobilization process. Based on the results above, a co-immobilization technique was developed and it can be utilized for large-scale production.