Browse > Article

Effects of Morphology and Rheology on Neo-fructosyltransferase Production by Penicillium citrinum  

Lim, Jung-Soo (Department of Chemical and Biological Engineering, Korea University)
Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University)
Kim, Jung-Mo (Department of Chemical and Biological Engineering, Korea University)
Park, Seung-Won (Food Ingredient Division, CJ Foods R&D, CJ Corp.)
Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.2, 2006 , pp. 100-104 More about this Journal
Abstract
In this study, we investigated the relationship between the morphology and the rheological properties of Penicillium citrinum to improve the production of neo-fructosyltransferase (neo-FTase). In a 2.5 L bioreactor culture of P. citrinum, it was observed that agitation speed and aeration rate had significant effects on the production of neo-FTase and that maximum cell mass and neo-FTase production obtained at 500 rpm and 1.5vvm were 8.14 g/L and $53.2{\times}10^{-3} U/mL$, respectively. Cell mass and neo-FTase production increased to 91.53 and 25.17%, respectively. In the morphology and rheology studies, P. citrinum showed a typical pellet morphology that was explained by a shaving mechanism; this phenomenon was significantly affected by carbon sources. The rheology of neo-FTase fermentation by P. citrinum was dependent on cell growth and fungal morphology.
Keywords
neo-fructosyltransferase; neo-fructooligosaccharide; pellet morphology; Penicillium citrinum; rheology;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Yun, J. W. (1996) Fructooligosaccharides-Occurrence, preparation, and application. Enzyme Microb. Technol. 19: 107-117   DOI   ScienceOn
2 Hayashi, S., Y. Shimokawa, M. Nogoguchi, Y. Tasasaki, H. Ueno, and K. Imada (1993) Nutritional status of Aureobasidium sp. ATCC 20524 for the production of $\beta$- fructofuranosidase. World J. Microbiol. Biotechnol. 9: 216-220   DOI   ScienceOn
3 Lim, J. S., J. H. Kim, C. Y. Kim, and S. W. Kim (2002) Morphological and rheological properties of culture broth of Cephalosporium acremonium M25. Korea-Australia Rheology J. 14: 11-16
4 Jimenez-Tobon, G. A., M. J. Penninckx, and R. Lejeune (1997) The relationship between pellet size and production of Mn(II) peroxidase by Phanerochaete chrysosporium in submerged culture. Enzyme Microb. Technol. 21: 537-542   DOI   ScienceOn
5 Yim, J. H., S. J. Kim, S. H. Aan, and H. K. Lee (2004) Physicochemical and rheological properties of a novel emulsifier, EPS-R, produced by the marine bacterium Hahella chejuensis. Biotechnol. Bioprocess Eng. 9: 405-413   DOI   ScienceOn
6 Tucker, K. G. and C. R. Thomas (1993) Effect of biomass concentration and morphology on the rheological parameters of Penicillium chrysogenum fermentation broths. Trans. IchemE. Part C 71: 111-117
7 Sinha, J., J. T. Bae, J. P. Park, C. H. Song, and J. W. Yun (2001) Effect of substrate concentration on broth rheology and fungal morphology during exo-biopolymer production by Paecilomyces japonica in a batch bioreactor. Enzyme Microb. Technol. 29: 392-399   DOI   ScienceOn
8 Jung, K. H., J. Y. Lim, S. J. Yoo, J. H. Lee, and M. Y. Yoo (1987) Production of fructosyltransferase from Aureobosidium pullulans. Biotechnol. Lett. 9: 703-708   DOI
9 Choi, D. B., K. A. Cho, W. S. Cha, and S. R. Ryu (2004) Effect of Triton X-100 on compactin production from Penicillium citrinum. Biotechnol. Bioprocess Eng. 9: 171-178   DOI   ScienceOn
10 Kim, J. H., J. S. Lim, and S. W. Kim (2004) The improvement of cephalosporin C production by fed-batch culture of Cephalosporium acremonium M25 using rice oil. Biotechnol. Bioprocess Eng. 9: 459-464   DOI   ScienceOn
11 Hayashi, S., M. Nonokuchi, K. Imada, and H. Ueno (1990) Production of fructosyl-transferring enzyme by Aureobasidium sp. ATCC 20524. J. Ind. Microbiol. 5: 395-400   DOI
12 Riley, G. L., K. G. Tucker, G. C. Paul, and C. R. Thomas (2000) Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnol. Bioeng. 68: 160-172   DOI   ScienceOn
13 Hang, Y., E. Woodams, and K. Jang (1995) Enzymatic conversion of sucrose to kestose by fungal extracellular fructosyltransferase. Biotechnol. Lett. 17: 295-298   DOI
14 Hirayama, M., N. Sumi, and H. Hidaka (1989) Purification and properties of a fructooligosaccharide-producing $\beta$-fructofuranosidase from Aspergillus niger ATCC 20611. Agric. Biol. Chem. 53:667-673
15 Seo, E. S., J. H. Lee, J. Y. Cho, M. Y. Seo, H. S. Lee, S. S. Chang, H. J. Lee, J. S. Choi, and D. M. Kim (2004) Synthesis and characterization of fructooligosaccharides using levansucrase with a high concentration of sucrose. Biotechnol. Bioprocess Eng. 9: 339-344   DOI   ScienceOn
16 Lee, M. S., J. S. Lim, C. H. Kim, K. K. Oh, S. I. Hong, and S. W. Kim (2001) Effects of nutrients and culture conditions on morphology in the seed culture of Cephalosporium acremonium ATCC 20339. Biotechnol. Bioprocess Eng. 6: 156-160   DOI   ScienceOn
17 Jung, K. H., J. W. Yun, K. R. Kang, J. Y. Lim, and J. H. Lee (1989) Mathematical model for enzymatic production of fructooligosaccharides from sucrose. Enzyme Microb. Technol. 11: 491-494   DOI   ScienceOn