• 제목/요약/키워드: negative-sequence current

검색결과 87건 처리시간 0.029초

대칭분 전류를 이용한 송전선로 보호용 고장상 선택 알고리즘 (Phase Selection Algorithm Symmetrical Components for Transmission Line Protection)

  • 이승재;이명수;이재규;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.22-24
    • /
    • 2001
  • This paper presents a fault phase selection algorithm for transmission line protection by means of the symmetrical components. Accurate fault phase selection is necessary for collect functioning of transmission line relaying, particularly in Extra High Voltage (EHV) networks. The conventional phase selection algorithm used the phase difference between positive and negative sequence current excluding load current. But, it is difficult to abstract only fault current since we can not know the time which a fault occurs. The proposed algorithm can select the accurately fault phase using fault current contained pre-fault current.

  • PDF

해상풍력단지에서의 PMSG 풍력발전기를 활용한 계통연계점 불평형 전원 보상 (Compensation of Unbalanced PCC Voltage in an Off-shore Wind Farm of PMSG Type Turbines)

  • 강자윤;한대수;서용석;정병창;김정중;박종형;최영준
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2015
  • This paper proposes a control algorithm for permanent magnet synchronous generators with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage off-shore wind power system under unbalanced grid conditions. Specifically, the proposed control algorithm compensates for unbalanced grid voltage at the PCC (Point of Common Coupling) in a collector bus of an off-shore wind power system. This control algorithm has been formulated based on symmetrical components in positive and negative synchronous rotating reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power is described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of AC input current is injected into the PCC in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm enables the provision of balanced voltage at the PCC resulting in the high quality generated power from off-shore wind power systems under unbalanced network conditions.

Resonance Investigation and Active Damping Method for VSC-HVDC Transmission Systems under Unbalanced Faults

  • Tang, Xin;Zhan, Ruoshui;Xi, Yanhui;Xu, Xianyong
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1467-1476
    • /
    • 2019
  • Grid unbalanced faults can cause core saturation of power transformer and produce lower-order harmonics. These issues increase the electrical stress of power electronic devices and can cause a tripping of an entire HVDC system. In this paper, based on the positive-sequence and negative-sequence impedance model of a VSC-HVDC system as seen from the point of common connection (PCC), the resonance problem is analyzed and the factors determining the resonant frequency are obtained. Furthermore, to suppress over-voltage and over-current during resonance, a novel method using a virtual harmonic resistor is proposed. The virtual harmonic resistor emulates the role of a resistor connected in series with the commutating inductor without influencing the active and reactive power control. Simulation results in PSCAD/EMTDC show that the proposed control strategy can suppress resonant over-voltage and over-current. In addition, it can be seen that the proposed strategy improves the safety of the VSC-HVDC system under unbalanced faults.

Analysis of Average Neutral Point Current in 3-level NPC Converter under Generalized Unbalanced AC Input Condition

  • Jung, Kyungsub;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.151-152
    • /
    • 2016
  • This paper presents a neutral point deviation compensating control algorithm applied to a 3-level NPC converter under generalized unbalanced ac input conditions. The neutral point deviation is analyzed with a focus on the current flowing out of or into the neutral point of the dc-link in 3-level NPC converter. The model of neutral point deviation and neutral current are also constructed. The positive and negative sequence components of the pole voltages and ac input currents are employed to accurately explain the behavior of 3-level NPC converter and its impact on neutral point deviation. This paper includes the harmonic characteristic of neutral point current under various imbalance AC operating conditions.

  • PDF

500 kV 수평배열 1회선 송전선로의 재폐로 무전압시간 산정 (Calculation of Reclosing Dead Time of 500 kV Horizontal Single Circuit Transmission Line)

  • 심응보;곽주식;주형준;박흥석;강연욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.641-643
    • /
    • 2005
  • It is usual to operate the long transmission line with transposition of each phase in order to avoid voltage unbalance due to unbalanced capacitances at each phase of the line end. This paper described the Ferranti voltage rise of line end, charging current and secondary arc current according to the transposition of line or not. The positive and negative sequence current was derived by the phase current, and then the unbalanced rate was calculated. Then, we obtained the reclosing dead time of the single phase reclosing scheme for 500 kV single circuit horizontal arrangement transmission line system.

  • PDF

초전도 전력케이블의 전류 불평형에 관한 연구 (A Study on the Unbalanced Current Distribution of HTS Power Cable)

  • 김재호;박충화
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.43-47
    • /
    • 2012
  • The unbalance currents flow the High Temperature Superconducting (HTS) power cable caused by asymmetrical fault, harmonic distortion and unbalanced load. That problem causes additional loss and leakage field in the HTS power cable, and deteriorates the electric power quality and stability. In addition, large amounts of unbalanced current can cause negative sequence and ground relays to operate. This paper presents an analysis unbalanced three-phase current distribution in HTS power cable caused by unbalanced load condition and grounding methods using PSCAD/EMTDC. The results obtained through the analysis would provide important data for the design of HTS power cables and valid information for their installation in power system.

Compensation of Neutral Point Deviation under Generalized 3-Phase Imbalance in 3-level NPC

  • Jung, Kyungsub;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1866-1878
    • /
    • 2018
  • This paper presents a neutral point deviation and ripple compensation control method for application to 3-level NPC converters. The neutral point deviation and its harmonic components are analyzed with a focus on the average current flowing through the neutral point of the dc-link. This paper also proposes a control scheme to compensate for the neutral point deviation and dominant harmonic components under generalized unbalanced grid operating conditions. The positive and negative sequence components of the pole voltages and ac input currents are employed to accurately explain the behavior of 3-level NPC converters. Simulation and experimental results are presented to verify the validity of the proposed method.

지중 송전선로 대칭분 임피던스 해석을 위한 EMTP 전후처리기 개발과 활용 (Development and Application of Pre/Post-processor to EMTP for Sequence Impedance Analysis of Underground Transmission Cables)

  • 최종기;장병태;안용호;최상규;이명희
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1364-1370
    • /
    • 2014
  • Power system fault analysis has been based on symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. Obtaining accurate line impedances as possible are very important for estimating fault current magnitude and setting distance relay accurately. Especially, accurate calculation of zero sequence impedance is important because most of transmission line faults are line-to-ground faults, not balanced three-phase fault. Since KEPCO has started measuring of transmission line impedance at 2005, it has been revealed that the measured and calculated line impedances are well agreed within reasonable accuracy. In case of underground transmission lines, however, large discrepancies in zero sequence impedance were observed occasionally. Since zero sequence impedance is an important input data for distance relay to locate faulted point correctly, it is urgently required to analyze, detect and consider countermeasures to the source of these discrepancies. In this paper, development of pre/post processor to ATP (Alternative Transient Program) version of EMTP (Electro-Magnetic Transient Program) for sequence impedance calculation was described. With the developed processor ATP-cable, effects of ground resistance and ECC (Earth Continuity Conductor) on sequence impedance were analyzed.

3상 불평형 부하를 고려한 TCR 제어기법에 관한 연구 (A Study on TCR Control Strategy in Unbalanced Load)

  • 박창주;박기원;최창호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1094-1097
    • /
    • 2001
  • The control method of Thyristor-controlled Reactor(TCR) is described in this paper for compensating the poor power factor, unbalanced and/or nonlinear load. Also, auxiliary controller such as DC current and power-factor controller is described. The reference current of TCR is calculated from the active and reactive current components for each of the positive and negative sequence components in the load currents. This reactive power control technique was verified by Matlab Simulink and 33Kvar TCR simulator, and will be used in 4.3Mvar TCR system, which will be installed next year at R-Tech Co., located in Po-Hang.

  • PDF

열연공장 TCR용 FC 설계기술 개발 (A Study on TCR Control Strategy in Hot Rolled Mill at POSCO)

  • 이왕하;박기원;박병주;김덕규
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권10호
    • /
    • pp.577-583
    • /
    • 2003
  • The control method of Thyristor Controlled Reactor(TCR) is described in this paper for compensating the poor power factor, unbalanced and/or nonlinear load. Also, auxiliary controller such as DC current and power-factor controller is described. The reference current of TCR is calculated from the active and reactive Current components for each of the positive and negative sequence components in the load Currents. This reactive power control technique was verified by simulation program and will be used in 5Mvar TCR system, which will be installed next year at hot rolled mill at POSCO, located in Kwang-Yang.