• 제목/요약/키워드: negative bias stress

검색결과 79건 처리시간 0.031초

Investigation of bias illumination stress in solution-processed bilayer metal-oxide thin-film transistors

  • Lee, Woobin;Eom, Jimi;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.302.1-302.1
    • /
    • 2016
  • Solution-processed amorphous metal-oxide thin-film transistors (TFTs) are considered as promising candidates for the upcoming transparent and flexible electronics due to their transparent property, good performance uniformity and possibility to fabricate at a low-temperature. In addition, solution processing metal oxide TFTs may allow non-vacuum fabrication of flexible electronic which can be more utilizable for easy and low-cost fabrication. Recently, for high-mobility oxide TFTs, multi-layered oxide channel devices have been introduced such as superlattice channel structure and heterojunction structure. However, only a few studies have been mentioned on the bias illumination stress in the multi- layered oxide TFTs. Therefore, in this research, we investigated the effects of bias illumination stress in solution-processed bilayer oxide TFTs which are fabricated by the deep ultraviolet photochemical activation process. For studying the electrical and stability characteristics, we implemented positive bias stress (PBS) and negative bias illumination stress (NBIS). Also, we studied the electrical properties such as field-effect mobility, threshold voltage ($V_T$) and subthreshold slop (SS) to understand effects of the bilayer channel structure.

  • PDF

비정질 InGaZnO 박막트랜지스터에서 Gate overlap 길이와 소자신뢰도 관계 연구 (Study of relation between gate overlap length and device reliability in amorphous InGaZnO thin film transistors)

  • 문영선;김건영;정진용;김대현;박종태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.769-772
    • /
    • 2014
  • 비정질 InGaZnO 박막트랜지스터의 Gate Overlap 길이에 따른 NBS(Negative Bias Stress) 및 hot carrier 스트레스 후 시간별 문턱전압의 변화에 의한 소자신뢰도를 분석하였다. 측정에 사용된 소자는 비정질 InGaZnO TFT이며 채널 폭 $W=104{\mu}m$, 게이트 길이 $L=10{\mu}m$이며 Gate Overlap 길이는 $0,1,2,3{\mu}m$를 사용하였다. 소자 신뢰도는 전류-전압을 측정하여 분석하였다. 측정 결과, hot carrier 스트레스 후 Gate Overlap 길이가 증가할수록 문턱전압의 변화가 증가하였다. 또한, NBS 후에는 Gate Overlap 길이가 증가할수록 문턱전압의 변화가 감소하였고 장시간 스트레스 후에 hump가 발생하였다.

  • PDF

자화된 유도 결합형 플라즈마를 이용한 다이아몬드성 탄소박막 증착 (Diamond-Like Carbon Films Prepared by Magnetized Inductively Coupled Plasma)

  • 김중균;이호준;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.323-325
    • /
    • 1995
  • An Inductively Coupled Plasma(ICP) was employed to prepare the Diamond-Like Carbon film with $CH_4$ gas. We observed the changes of mechanical, optical properties and internal stress of the films according to the variation of discharge power and negative-self bias. When weak magnetic field is applied, the properties of film are observed to change drastically. In magnetized case, the micro-hardness and the internal stress increase up to critical point and droped down in marked contrast to unmagnetized case. It suggests that large amount of ion flux exists due to high dissociation rate of the reactive radicals in plasma with magnetic field as reported elsewhere. As a result of FT-IR absorption measurement it could be confirmed that the $CH_x$ bonding and the micro-hardness and the internal stress decreased with the increase of negative-self bias.

  • PDF

a-Si Gate Driver with Alternating Gate Bias to Pull-Down TFTs

  • Kim, Byeong-Hoon;Pi, Jae-Eun;Oh, Min-Woo;Tao, Ren;Oh, Hwan-Sool;Park, Kee-Chan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1243-1246
    • /
    • 2009
  • A novel a-Si TFT integrated gate driver circuit which suppresses the threshold voltage shift due to prolonged positive gate bias to pull-down TFTs, is reported. Negative gate-to-drain bias is applied alternately to the pull-down TFTs to recover the threshold voltage shift. Consequently, the stability of the circuit has been improved considerably.

  • PDF

잉크젯 프린팅으로 제작된 유기 박막 트랜지스터의 이력특성 분석 (Hysteresis characteristics of organic thin film transistors using inkjet printing)

  • 구남희;송승현;최길복;송근규;김보성;신성식;정윤하
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.557-558
    • /
    • 2006
  • In this paper, the hysteresis characteristics by bias stress in organic thin film transistors using inkjet printing were investigated. Electron trapping increased threshold voltage for positive gate bias stress and hole trapping decreased threshold voltage for negative gate bias stress. From these phenomena, highly reproducible measurement method which minimized threshold voltage shift by choosing the proper range of gate voltage was suggested. Using this measurement method, we found that electron trapping as well as hole trapping had important influence on hysteresis characteristics.

  • PDF

비전투 지역 군인의 비만 스트레스, 체중편견 및 건강관리가 체질량지수에 미치는 영향 (The Effects of Obesity Stress, Weight Bias, and Heath Care on BMI in Soldiers of Non-combat Area)

  • 김경진;나연경
    • 한국직업건강간호학회지
    • /
    • 제25권3호
    • /
    • pp.199-207
    • /
    • 2016
  • Purpose: The purpose of this study was to identify the obesity stress, weight bias and health care on Body Mass Index (BMI) in soldiers of non-combat area and to provide data for improving the quality of their life. Methods: This research involved 165 soldiers working in non-combat area. Data collection was conducted from November 1 to 20, 2015. Statistical analysis of the collected data were t-test and ANOVA, $Scheff{\acute{e}}$ method post hoc analysis, Pearson's correlation coefficients, and multiple liner regression using IBM SPSS 22.0. Results: The mean score of obesity stress was moderate ($19.05{\pm}5.28$). The mean score of weight bias was 69.03 and health care was 2.41 points. There are a positive correlation between obesity stress and BMI (r=.19, p<.05). Weight bias (r=-.19, p<.01) and health care (r=-.26, p<.01) among the subjects had negative correlations with BMI. In a multiple liner regression, obesity stress (${\beta}=.18$, p<.05), health care (${\beta}=-.18$, p<.05) were associated with BMI. Conclusion: Based on the findings that obesity stress and health care influence BMI, there is a need to control stress and to properly set proper guidelines on health care for soldiers.

Improved Stability of Atomic Layer Deposited ZnO Thin Film Transistor by Intercycle Oxidation

  • Oh, Him-Chan;KoPark, Sang-Hee;Ryu, Min-Ki;Hwang, Chi-Sun;Yang, Shin-Hyuk;Kwon, Oh-Sang
    • ETRI Journal
    • /
    • 제34권2호
    • /
    • pp.280-283
    • /
    • 2012
  • By inserting $H_2O$ treatment steps during atomic layer deposition of a ZnO layer, the turn-on voltage shift from negative bias stress (NBS) under illumination was reduced considerably compared to that of a device that has a continuously grown ZnO layer without any treatment steps. Meanwhile, treatment steps without introducing reactive gases, and simply staying under a low working pressure, aggravated the instability under illuminated NBS due to an increase of oxygen vacancy concentration in the ZnO layer. From the experiment results, additional oxidation of the ZnO channel layer is proven to be effective in improving the stability against illuminated NBS.

Experimental Investigation of Physical Mechanism for Asymmetrical Degradation in Amorphous InGaZnO Thin-film Transistors under Simultaneous Gate and Drain Bias Stresses

  • Jeong, Chan-Yong;Kim, Hee-Joong;Lee, Jeong-Hwan;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.239-244
    • /
    • 2017
  • We experimentally investigate the physical mechanism for asymmetrical degradation in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under simultaneous gate and drain bias stresses. The transfer curves exhibit an asymmetrical negative shift after the application of gate-to-source ($V_{GS}$) and drain-to-source ($V_{DS}$) bias stresses of ($V_{GS}=24V$, $V_{DS}=15.9V$) and ($V_{GS}=22V$, $V_{DS}=20V$), but the asymmetrical degradation is more significant after the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20 V) nevertheless the vertical electric field at the source is higher under the bias stress ($V_{GS}$, $V_{DS}$) of (24 V, 15.9 V) than (22 V, 20 V). By using the modified external load resistance method, we extract the source contact resistance ($R_S$) and the voltage drop at $R_S$ ($V_{S,\;drop}$) in the fabricated a-IGZO TFT under both bias stresses. A significantly higher RS and $V_{S,\;drop}$ are extracted under the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20V) than (24 V, 15.9 V), which implies that the high horizontal electric field across the source contact due to the large voltage drop at the reverse biased Schottky junction is the dominant physical mechanism causing the asymmetrical degradation of a-IGZO TFTs under simultaneous gate and drain bias stresses.

Analysis of Instability Mechanism under Simultaneous Positive Gate and Drain Bias Stress in Self-Aligned Top-Gate Amorphous Indium-Zinc-Oxide Thin-Film Transistors

  • Kim, Jonghwa;Choi, Sungju;Jang, Jaeman;Jang, Jun Tae;Kim, Jungmok;Choi, Sung-Jin;Kim, Dong Myong;Kim, Dae Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권5호
    • /
    • pp.526-532
    • /
    • 2015
  • We quantitatively investigated instability mechanisms under simultaneous positive gate and drain bias stress (SPGDBS) in self-aligned top-gate amorphous indium-zinc-oxide thin-film transistors. After SPGDBS ($V_{GS}=13V$and $V_{DS}=13V$), the parallel shift of the transfer curve into a negative $V_{GS}$ direction and the increase of on current were observed. In order to quantitatively analyze mechanisms of the SPGDBS-induced negative shift of threshold voltage (${\Delta}V_T$), we experimentally extracted the density-of-state, and then analyzed by comparing and combining measurement data and TCAD simulation. As results, 19% and 81% of ${\Delta}V_T$ were taken to the donor-state creation and the hole trapping, respectively. This donor-state seems to be doubly ionized oxygen vacancy ($V{_O}^{2+}$). In addition, it was also confirmed that the wider channel width corresponds with more negative ${\Delta}V_T$. It means that both the donor-state creation and hole trapping can be enhanced due to the increase in self-heating as the width becomes wider. Lastly, all analyzed results were verified by reproducing transfer curves through TCAD simulation.

Hafnium doping effect in a zinc oxide channel layer for improving the bias stability of oxide thin film transistors

  • Moon, Yeon-Keon;Kim, Woong-Sun;Lee, Sih;Kang, Byung-Woo;Kim, Kyung-Taek;Shin, Se-Young;Park, Jong-Wan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.252-253
    • /
    • 2011
  • ZnO-based thin film transistors (TFTs) are of great interest for application in next generation flat panel displays. Most research has been based on amorphous indium-gallium-zinc-oxide (IGZO) TFTs, rather than single binary oxides, such as ZnO, due to the reproducibility, uniformity, and surface smoothness of the IGZO active channel layer. However, recently, intrinsic ZnO-TFTs have been investigated, and TFT- arrayss have been demonstrated as prototypes of flat-panel displays and electronic circuits. However, ZnO thin films have some significant problems for application as an active channel layer of TFTs; it was easy to change the electrical properties of the i-ZnO thin films under external conditions. The variable electrical properties lead to unstable TFTs device characteristics under bias stress and/or temperature. In order to obtain higher performance and more stable ZnO-based TFTs, HZO thin film was used as an active channel layer. It was expected that HZO-TFTs would have more stable electrical characteristics under gate bias stress conditions because the binding energy of Hf-O is greater than that of Zn-O. For deposition of HZO thin films, Hf would be substituted with Zn, and then Hf could be suppressed to generate oxygen vacancies. In this study, the fabrication of the oxide-based TFTs with HZO active channel layer was reported with excellent stability. Application of HZO thin films as an active channel layer improved the TFT device performance and bias stability, as compared to i-ZnO TFTs. The excellent negative bias temperature stress (NBTS) stability of the device was analyzed using the HZO and i-ZnO TFTs transfer curves acquired at a high temperature (473 K).

  • PDF