• Title/Summary/Keyword: near-tip grid refinement

Search Result 3, Processing Time 0.02 seconds

Near-tip grid refinement for the effective and reliable natural element crack analysis

  • Cho, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.279-287
    • /
    • 2019
  • This paper intends to introduce a near-tip grid refinement and to explore its usefulness in the crack analysis by the natural element method (NEM). As a sort of local h-refinement in FEM, a NEM grid is locally refined around the crack tip showing the high stress singularity. This local grid refinement is completed in two steps in which grid points are added and Delaunay triangles sharing the crack tip node are divided. A plane-state plate with symmetric edge cracks is simulated to validate the proposed local grid refinement and to examine its usefulness in the crack analysis. The crack analysis is also simulated using a uniform NEM grid for the sake of comparison. The near-tip stress distributions and SIFs that are obtained using a near-tip refined NEM grid are compared with the exact values and those obtained using uniform NEM grid. The convergence rates of global relative error to the total number of grid points between the refined and non-refined NEM grids are also compared.

A Near-tip Grid Refinement for the Effective and Reliable Crack Analysis by Natural Element Method (효율적이고 신뢰성있는 자연요소 균열해석을 위한 균열선단 그리드 세분화기법)

  • Cho, Jin-Rae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.183-190
    • /
    • 2019
  • This paper introduces a near-tip grid refinement and explores its usefulness in the crack analysis by the natural element method(NEM). As a sort of local h-refinement in finite element method(FEM), a NEM grid is locally refined around the crack tip showing high stress singularity. This local grid refinement is completed in two steps in which grid points are added and Delaunay triangles sharing the crack tip node are divided. A plane strain rectangular plate with symmetric edge cracks is simulated to validate the proposed local grid refinement and to examine its usefulness in the crack analysis. The crack analysis is also simulated using a uniform NEM grid for comparison. Unlike the uniform grid, the refined grid provides near-tip stress distributions similar to the analytic solutions and the fine grid. In addition, the refined grid shows higher convergence than the uniform grid, the global relative error to the total number of grid points.

Computation of mixed-mode stress intensity factors in functionally graded materials by natural element method

  • Cho, J.R.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.43-51
    • /
    • 2019
  • This paper is concerned with the numerical calculation of mixed-mode stress intensity factors (SIFs) of 2-D isotropic functionally graded materials (FGMs) by the natural element method (more exactly, Petrov-Galerkin NEM). The spatial variation of elastic modulus in non-homogeneous FGMs is reflected into the modified interaction integral ${\tilde{M}}^{(1,2)}$. The local NEM grid near the crack tip is refined, and the directly approximated strain and stress fields by PG-NEM are enhanced and smoothened by the patch recovery technique. Two numerical examples with the exponentially varying elastic modulus are taken to illustrate the proposed method. The mixed-mode SIFs are parametrically computed with respect to the exponent index in the elastic modulus and external loading and the crack angle and compared with the other reported results. It has been justified from the numerical results that the present method successfully and accurately calculates the mixed-mode stress intensity factors of 2-D non-homogeneous functionally graded materials.