• 제목/요약/키워드: near-incompressible

검색결과 74건 처리시간 0.018초

유동함수-와도 관계를 이용한 격자볼츠만 방법에서의 격자 세밀화 모델 (Grid Refinement Model in Lattice Boltzmann Method for Stream Function-Vorticity Formulations)

  • 신명섭
    • 대한기계학회논문집B
    • /
    • 제39권5호
    • /
    • pp.415-423
    • /
    • 2015
  • 본 연구에서는 2차원 비압축성 유체 유동을 해석하기 위하여 격자 세밀화 모델을 적용한 격자볼츠만 방법(LBM)을 수치적으로 연구하였다. 일반적으로 유동해석에서 충분한 정확도를 얻기 위해서는 관심 있는 영역에서 격자가 세밀하게 구성되어야 한다. 그래서 본 연구에서는 유동함수-와도 공식을 적용한 LBM에 격자 세밀화 모델을 적용하여 유동해석을 수행하였다. 공동형상 유동에서의 기존의 신뢰성 있는 유동장 결과와의 비교를 통해 본 연구의 격자 세밀화 모델을 적용한 격자볼츠만 방법의 신뢰성과 유용성을 검토하였다.

전교통동맥류 내부 유동 전산해석을 통한 낮은 벽면 전단 응력 영역 발달 분석 (Evolution of Low Wall-Shear Stress Area in Anterior Communicating Artery Aneurysm)

  • 국윤혁;권태호;문성득;김동민;황진율;배영오
    • 한국가시화정보학회지
    • /
    • 제20권2호
    • /
    • pp.45-54
    • /
    • 2022
  • We analyzed the low wall-shear stress area in the intracranial aneurysm that occurred at an anterior communicating artery with a special emphasis on vortical structures close to the wall. We reconstructed the aneurysm model from patient CTA data. We assumed blood as an incompressible Newtonian fluid and treated the blood vessel as a solid wall. The pulsatile boundary condition was applied at the inlet of the anterior cerebral artery. From the instantaneous flow field, we computed the histogram of the wall-shear stress over the aneurysm wall and found the low wall-shear stress event (< 0.4 Pa). This extreme event was due to the low wall-shear stress area that occurred at the daughter sac. We found that the merging of two vortices induced the low wall-shear stress area; one arises from the morphological characteristics of the daughter sac, and the other is formed by a jet flow into the aneurysm sac. The latter approaches the daughter sac, which ultimately leads to the strong ejection event near the daughter sac.

협착된 경동맥내 천이 유동 수치 해석 (Numerical Analysis of Transitional Flow in a Stenosed Carotid Artery)

  • 김동민;황진율;민두재;조원민
    • 한국가시화정보학회지
    • /
    • 제20권1호
    • /
    • pp.52-63
    • /
    • 2022
  • Direct numerical simulation of blood flow in a stenosed, patient-specific carotid artery was conducted to explore the transient behavior of blood flow with special emphasis on the wall-shear stress distribution over the transition region. We assumed the blood as an incompressible Newtonian fluid, and the vessel was treated as a solid wall. The pulsatile boundary condition was applied at the inlet of the carotid. The Reynolds number is 884 based on the inlet diameter, and the maximum flow rate and the corresponding Womersley number is approximately 5.9. We found the transitional behavior during the acceleration and deceleration phases. In order to quantitatively examine the wall-shear stress distribution over the transition region, the probability density function of the wall-shear stress was computed. It showed that the negative wall-shear stress events frequently occur near peak systole. In addition, the oscillatory shear stress index was used to further analyze the relationship with the negative wall-shear stress appearing in the systolic phase.

사각형의 MHD 추진 덕트 내부유동에 관한 수치해석 및 실험적 연구 (Numerical Analysis and Experimental Investigation of Duct Flows of an MHD Propulsion System)

  • 이진욱;이상준;이정묵
    • 대한조선학회논문집
    • /
    • 제32권1호
    • /
    • pp.83-93
    • /
    • 1995
  • 사각형의 MHD 추진 덕트 내부유동을 수치해석과 실험적인 방법으로 연구하였다. 수치해석연구에서는 전기장과 자기장의 영향하에 있는 비압축성 3차원 통전유체에 대하여 유한 차분법으로 계산하였다. 수치계산의 결과 전자기력이 약할때 층류유동의 전형적인 포물선 유동 형태가 전극 부근에서 M자 형상으로 변하였고, 균일분포의 일정 전자기력하에서 MHD 덕트 내부 압력은 입구에서부터 하류로 나아감에 따라 선형적으로 증가하였다. 실험에서는 MHD 추진 덕트 내부 유동을 해석할 수 있는 실험장치를 제작 하였으며, MHD 추진은 전류를 변화 시킴으로써 추력을 쉽게 조정할 수 있음을 알았다. 또한 MHD 덕트내 유동방향의 압력구배는 전자기력에 비례하여 증가하며 수치계산 결과와 잘 일치하였다.

  • PDF

자유표면을 가지는 점성 유동장내의 기포거동에 관한 기초해석 (Basic Analysis of Bubble Behavior in the Viscous Flow Domain with the Free Interface)

  • 박일룡;전호환
    • 대한조선학회논문집
    • /
    • 제39권1호
    • /
    • pp.16-27
    • /
    • 2002
  • 이유체 비압축성 점성 유동장내에서의 이차원 기포의 운동과 변형을 레벨셋 방법을 도입하여 해석하였다. 지배방정식은 유한체적법을 사용하여 해석하였다. 본 방법의 수치계산결과는 발표된 실험결과와 계산결과의 비교를 통해 검증하였다. 수치계산에서는 초기상태에 유동장 내에 두 유체의 비교란 자유표면이 존재할 때 단일 및 다수의 기포의 운동과 변형을 해석하였다. 해석을 통해 표면장력의 변화와 밀도비의 변화에 따른 기포거동의 변화를 살펴볼 수 있었다. 자유표면은 기포가 자유표면으로 상승할 때 기포의 거동에 큰 영향을 끼친다. 레벨셋법을 사용하여 계산된 본 연구의 결과들을 통해서 기포거동의 특성을 살펴볼 수 있었다.

FDS-HCIB법을 이용한 고립파에 의한 물체 운동 모사 (Simulation of Body Motion Caused by a Solitary Wave using the FDS-HCIB Method)

  • 신상묵;김인철;김용직
    • 대한조선학회논문집
    • /
    • 제51권4호
    • /
    • pp.265-273
    • /
    • 2014
  • Wave-body interaction is simulated using a developed code based on the flux-difference splitting scheme for immiscible and incompressible fluids and the hybrid Cartesian/immersed boundary method. A free surface is captured as a moving contact discontinuity within a fluid domain and an approximated Riemann solver is used to estimate the inviscid flux across the discontinuity. Immersed boundary nodes are identified inside an instantaneous fluid domain near a moving body, then dependent variables are reconstructed at those immersed boundary nodes based on interpolation along local normal lines to the boundary. Free surface flows around an oscillating cylinder are simulated and the computed wave elevations are compared with other reported results. The generation of a solitary wave by a moving wave-maker is simulated and the time histories of wave elevations at two different points are compared with other results. The developed code is applied to simulate body motion of an elastically mounted circular cylinder as a solitary wave passes the body. The force acting on an elastically mounted cylinder is compared with the force acting on a fixed cylinder. Grid independency of the computed body motion is established based on a comparison of results using three different-size grids.

Butane 및 propane의 비정상 난류 제트 특성에 관한 연구 (A study on Behavior of Turbulent Transient Jets with Butane and Propane)

  • 이범호;송학현;조승환;홍성태;이대엽;이태우
    • 한국분무공학회지
    • /
    • 제15권2호
    • /
    • pp.74-82
    • /
    • 2010
  • In order to understand the behavior of transient gaseous injection used in an LPG (Liquefied Petroleum Gas) engine, turbulent incompressible transient jets with butane and propane were measured and analyzed at pressures of 1.5 bar and 2.0 bar with injector diameters of 3 mm and 5 mm. Mie-scattering method with a tracer was used, and images were processed to investigate the behavior of butane and propane jets. Distances from the nozzle to transition region were measured as $L_e/d_{inj}$=4.35~19.4, where $L_e$ and $d_{inj}$ indicate respectively a distance from nozzle to transition point and nozzle diameter. Slits and tubes around jet at near-field were introduced to measure the effect of entrainment and the diameter of jet, which revealed that the entrainment of surrounding air is significant for developing jet diameter. When the entrainment is restricted, the behavior of jet became deviating from the baseline. It was found that the virtual origin located outside of a nozzle towards jet tip within the conditions of this work, and its location was estimated as $x_o/d_{inj}$=0.56~7.25, where $x_o$ is a distance from nozzle to virtual origin.

벽 근접 효과에 의한 물체의 항력 양력 변화 (EFFECT OF WALL PROXIMITY ON DRAG AND LIFT FORCES ON A CIRCULAR CYLINDER)

  • 박현욱;이창훈;최정일
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.68-74
    • /
    • 2012
  • Near-wall effect on wakes behind particles is one of the important factors in precise tracking of particles in turbulent flows. However, most aerodynamic force models for particles did not fully consider the wall effect. In the present study, we focused on changes of hydrodynamic forces acting on a particle depending on wall proximity. To this end, we developed an immersed boundary method with multi-direct forcing incorporated to a fully implicit decoupling procedure for incompressible flows. We validate the present immersed boundary method through two-dimensional simulations of flow over a circular cylinder. Comprehensive parametric studies on the effect of the wall proximity on the drag and lift forces acting on an immersed circular cylinder in a channel flow are performed in order to investigate general flow patterns behind the circular cylinder for a wide range of Reynolds number (0.01 ${\leq}$ Re ${\leq}$ 200). As the cylinder is closer to the wall, the drag coefficient decreases while the lift coefficient increases with a local maximum. Maximum drag and lift coefficients for different wall proximities decrease with increment of Reynolds number. Normalized drag and lift coefficients by their maximum values show universal correlations between the coefficients and wall proximity in a low Reynolds number regime (Re ${\leq}$ 1).

엔진의 흡기 공기량 조절용 스로틀 밸브에서의 유동 특성 (Flow Characteristics inside a Throttle Valve Used to Control the Intake Air Flow in Engines)

  • 김성초;김철
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.91-98
    • /
    • 1999
  • This paper describes the air flow characteristics inside the throttle valve. Tow-dimensional steady incompressible Navier-Strokes equation are solved numerically with embedding the conceopt of the artificial compressibility and adopting the Baldwin-Lomax turbulence model. With varying the valve opening angles(the Reynolds number )such as 15$^{\circ}$(5000) , 45$^{\circ}$(3000) , 75$^{\circ}$(7000) and 90$^{\circ}$(10000), respectively. tow cases, with a valve shaft and without one, are analysed. The pressure loss between the entrance and exit is severe at 15$^{\circ}$, 100 times as larger as that of 90$^{\circ}$ case, which also depends much on the existece of the valve shaft. The counter rotating vortices are formed over the valve plate with the shaft at only 75$^{\circ}$. They are smally and very large scale in front and back of the valve shaft , respectively. The velocity profiles of 15$^{\circ}$ and 90$^{\circ}$ at the exit are almost symmetric to the horizontal center line, however, the symmetricity is no longer maintained at 45$^{\circ}$ and 75$^{\circ}$ , and in addition, the flow at 75$^{\circ}$ is enforced a lot below center line. The pressure distribution on the walls is largely changed near the valve shaft, and its magnitude becomes great as the valve angle decreases.

  • PDF

Numerical simulation of wave interacting with a free rolling body

  • Jung, Jae Hwan;Yoon, Hyun Sik;Chun, Ho Hwan;Lee, Inwon;Park, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권3호
    • /
    • pp.333-347
    • /
    • 2013
  • The present study numerically models the interaction between a regular wave and the roll motion of a rectangular floating structure. In order to simulate two-dimensional incompressible viscous two-phase flow in a numerical wave tank with the rectangular floating structure, the present study used the volume of fluid method based on the finite volume method. The sliding mesh technique is adopted to handle the motion of the rectangular floating structure induced by fluid-structure interaction. The effect of the wave period on the flow, roll motion and forces acting on the structure is examined by considering three different wave periods. The time variations of the wave height and the roll motion of the rectangular structure are in good agreement with experimental results for all wave periods. The present response amplitude operator is in good agreement with experimental results with the linear potential theory. The present numerical results effectively represent the entire process of vortex generation and evolution described by the experimental results. The longer wave period showed a different mechanism of the vortex evolution near each bottom corner of the structure compared to cases of shorter wave periods. In addition, the x-directional and z-directional forces acting on the structure are analyzed.