• Title/Summary/Keyword: near-edge x-ray absorption fine structure spectroscopy

Search Result 24, Processing Time 0.028 seconds

Application of X-ray Absorption Spectroscopy (XAS) in the Field of Stabilization of As and Heavy Metal Contaminated Soil (비소 및 중금속 오염토양 안정화 분야에서의 X선 흡수분광법(XAS) 활용)

  • Lim, Jung Eun;Moon, Deok Hyun;Kim, Kwon-Rae;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.65-74
    • /
    • 2015
  • X-ray absorption fine structure (XAFS) analysis using X-ray absorption spectroscopy is being applied as a state-of-the-art method in a wide range of disciplines. This review article summarizes the overall procedure of XAFS analysis from the preparation of soil samples to the analysis of data in X-ray absorption near edge structure (XANES) region and extended Xray absorption fine structure (EXAFS) region. The previous studies on application of XANES and EXAFS techniques in environmental soil science field are discussed and classified them according to metal(loid)s (As, Cd, Cu, Ni, Pb, and Zn). A significant number of previous studies of XAFS application in the environmental soil science field have focused on the identification of Pb chemical species in soil. Moreover, XANES and EXAFS techniques have been widely used to investigate the contamination source via identification of metal species. Similarly, these techniques were applied to identify the mechanisms of metal stabilization in soil after application of various amendments, phytoremediation, etc.

Ring Formation of Furan on Epitaxial Graphene (단결정 그라핀 위에서의 퓨란의 고리모양 형성)

  • Kim, Ki-Jeong;Yang, Se-Na;Park, Young-Chan;Lee, Han-Koo;Kim, Bong-Soo;Lee, Han-Gil
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.252-257
    • /
    • 2011
  • The ring formation and electronic properties of furan adsorbed on graphene layers grown on 6H-SiC (0001) has been investigated using atomic force microscopy (AFM), near edge X-ray absorption fine structure (NEXAFS) spectra for the C K-edge, and core level photoemission spectroscopy (CLPES). Moreover, we observed that furan molecules adsorbed on graphene could be used for chemical functionalization via the lone pair electrons of the oxygen group, allowing chemical doping. We also found that furan spontaneously form rings with one of three different bonding configurations and the electronic properties of the ring formed by furan on graphene can be described using by AFM, NEXAFS and CLPES, respectively.

Local Structure Refinement of the $BaFe_{1-x}Sn_xO_{3-y}$ System with Fe K-Edge X-Ray Absorption (XANES/EXAFS) Spectroscopy

  • 김민규;곽기섭;로권선;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.743-749
    • /
    • 1997
  • Local structure refinement of the BaFe1-xSnxO3-y system (x=0.00-0.50) has been carried out with Fe K-edge x-ray absorpion spectroscopic studies. It is found out that the Fe ions are placed in two different symmetric sites such as tetrahedral and octahedral sites in the compounds by comparison with Fe K-edge x-ray absorption near edge structure (XANES) spectrum of the γ-Fe2O3 compound as a reference. Small absorption peaks of dipole-forbiden transitions appear at a pre-edge region of 7111 eV due to the existence of Fe ions in the tetrahedral and octahedral sites. The peak intensity decreases with the substitution amount of Sn ion. Three different absorption peaks of 1s→4p dipole-allowed transition appear on the energy region between 7123 and 7131 eV. The peaks correspond to 1s→4p main transition of Fe ions in tetrahedral and octahedral sites and 1s→4p transition followed by the shakedown process of ligand to metal charge transfer. The bond distances between Fe ions in the tetrahedral site and nearest neighboring oxygen atom (Fe-4O), and those in octahedral site (Fe-6O) are determined with the extended x-ray absorption fine structure (EXAFS) analysis. Two different interatomic distances increase with the substitution amount of Sn ion and also the bond lengths of Fe-4O are shorter than those of Fe-6O in all compounds.

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF

Electronic structure studies of Co-substituted FINEMET alloys by x-ray absorption spectroscopy

  • Chae, K.H.;Gautam, S.;Song, J.H.;Kane, S.N.;Varga, L.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.377-377
    • /
    • 2010
  • FINEMET type nanocrystalline materials synthesized by controlled crystallization of amorphous ribbons[1] exhibit excellent soft magnetic properties making them attractive for technological applications. Present work reports the electronic structure studies of Co-substituted FINEMET to get information on the effect of successive Co substitution on local environment around Fe and Co atom by using near edge x-ray absorption fine structure (NEXAFS) and x-ray magnetic circular dichroism (XMCD) measurements. NEXAFS spectroscopy and XMCD measurements have been carried out at Fe $L_{3,2}$ and Co $L_{3,2}$-edges to investigate the chemical states and electronic structure of FINEMET [$(Fe_{100-x}Co_x)_{78}Si_9Nb_3Cu_1Ba$](0$L_{3,2}$-edge reveal that Fe is in 2+ state and in tetrahedral symmetry with other elements. The magnetic properties exhibiting soft magnetic behavior[2] are discussed on the basis of the electronic structure studied through XMCD.

  • PDF

Comparative Study of Tetrahydrothiophene and Thiophene Self Assembled Monolayers on Au(111): Structure and Molecular Orientation

  • Ito, Eisuke;Hara, Masahiko;Kanai, Kaname;Ouchi, Yukio;Seki, Kazuhiko;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1755-1759
    • /
    • 2009
  • Surface structure and molecular orientation of self-assembled monolayers (SAMs) formed by the spontaneous adsorption of tetrahydrothiophene (THT) and thiophene (TP) on Au(111) were investigated by means of scanning tunneling microscopy (STM) and carbon K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy. STM imaging revealed that THT SAMs have a commensurate (3 ${\times}\;2\sqrt[]{3}$) structure containing structural defects in ordered domains, whereas TP SAMs are composed of randomly adsorbed domains and paired molecular row domains that can be described as an incommensurate packing structure. The NEXAFS spectroscopy study showed that the average tilt angle of the aliphatic THT ring and $\pi$-conjugated TP ring in the SAMs were calculated to be about $30^o\;and\;40^o$, respectively, from the surface normal. It was also observed that the $\pi$* transition peak in the NEXAFS spectrum of the TP SAMs is very weak, suggesting that a strong interaction between $\pi$-electrons and the Au surface arises during the self-assembly of TP molecules. In this study, we have clearly demonstrated that the surface structure and adsorption orientation of organic SAMs on Au(111) are strongly influenced by whether the cyclic ring is saturated or unsaturated.

MICROSTRUCTURAL STUDY OF $Fe_{1-x}Ti_x$ ALLOYS FORMED BY ION BEAM MIXING

  • Jeon, Y.;Lee, Y.S.;Choi, B.S.;Woo, J.J.;Whang, C.N.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.127-132
    • /
    • 1997
  • Microstructure of the Fe-Ti system by ion beam mixing of multilayers at 300 K and 77 K has been studied in a wide composition range. The ion bombardment was carried out using $Ar^+$ ions at 80 keV. Using grazing angle x-ray diffraction we find that the lattice parameters of these bcc solid solutions are very close to that of $\alpha$-Fe. Extended x-ray absorption fine-structure spectroscopy have been performed to investgate the short-range order in the ion-beam-mixed state. The structure parameters, such as the interatomic distance and the coordination number are estmated from the Fe K-edge Fourier filtered EXAFS spectra. The interatomic distance is independent of the alloy concentration and it is almost constant. The study of x-ray absorption near-edge structure gives information on the individual $\rho$components of the partial densityof states of the conduction band of the Fe and Ti We also find that a charge transfer from Ti to Fe atoms takes place.

  • PDF

Irradiation-Induced Electronic Structure Modifications in ZnO Thin Films Studied by X-Ray Absorption Spectroscopy

  • Gautam, Sanjeev;Yang, Bum Jin;Lee, Yunju;Jung, Ildoo;Won, Sung Ok;Song, Jonghan;Asokan, K.;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.456-456
    • /
    • 2013
  • We report the modifications in the electronic structureof ZnO thin films induced by swift heavy ion (SHI) irradiated ZnO thin films by using near edge X-ray absorption fine structure (NEXAFS) spectroscopy at O K-edge was performed at BL10D XAS-KIST beamline at Pohang Accelerator Lab (PAL). ZnO films of 250 nm thickness oriented in [200] plane deposited by RF magnetron sputtering using equal $Ar:O_2$ atmosphere and air annealed at $500^{\circ}C$ for 6 hours for stability were irradiated with 120 MeV Au and 100 MeV O beams separately with different doses ranging from $1{\times}10^{11}$ to $5{\times}10^{12}$ ions/$cm^2$. High Resolution X-ray diffraction and NEXAFS analysis indicates significant changes in the electronic structure and the SHI effect is different for Ag and O-beams. The NEXAFS measurements provide direct evidence of O 2p and Zn 3d orbital hybridization. The NEXAFS results will be presented in detail.

  • PDF

Optical properties of epitaxial $Gd_2$O_3:EU^{3+}$luminescent thin films depending on crystallinity ($Gd_2$O_3:EU^{3+}$ 형광체 박막의 결정성에 따른 발광특성 연구)

  • 장문형;최윤기;정권범;황보상우;장홍규;노명근;조만호;손기선;김창해
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.275-280
    • /
    • 2003
  • Epitaxial Gd$_2O_3:Eu^{3+}$luminescent thin films have been grout on Si(III) substrates using ionized Cluster Beam Deposition (ICBD). After the film growing, they were implanted and post annealed to change the crystal structure. The initial growth stage was monitored by using in-situ Reflection High Energy Electron Diffraction (RHEED). The formed crystal structure was identified with X-ray diffraction (XRD) technique and Fourier transform infrared (FT-R) spectroscopy. The electronic states variations were investigated by Near Edge X-ray Absorption Fine Structure (NEXAFS). Photoluminescence (PL), Cathodoluminescence (CL). and Vacuum ultraviolet (VUV) spectrum were used for examining the optical properties. We report the optical property changes depending on crystal structure and the electronic states.