DOI QR코드

DOI QR Code

Ring Formation of Furan on Epitaxial Graphene

단결정 그라핀 위에서의 퓨란의 고리모양 형성

  • Kim, Ki-Jeong (Pohang Accelerator Laboratory, POSTECH) ;
  • Yang, Se-Na (Department of Chemistry, Sookmyung Women's University) ;
  • Park, Young-Chan (Department of Chemistry, Sookmyung Women's University) ;
  • Lee, Han-Koo (Pohang Accelerator Laboratory, POSTECH) ;
  • Kim, Bong-Soo (Pohang Accelerator Laboratory, POSTECH) ;
  • Lee, Han-Gil (Department of Chemistry, Sookmyung Women's University)
  • 김기정 (포항가속기연구소, POSTECH) ;
  • 양세나 (숙명여자대학교 화학과) ;
  • 박영찬 (숙명여자대학교 화학과) ;
  • 이한구 (포항가속기연구소, POSTECH) ;
  • 김봉수 (포항가속기연구소, POSTECH) ;
  • 이한길 (숙명여자대학교 화학과)
  • Received : 2011.03.17
  • Accepted : 2011.05.25
  • Published : 2011.07.30

Abstract

The ring formation and electronic properties of furan adsorbed on graphene layers grown on 6H-SiC (0001) has been investigated using atomic force microscopy (AFM), near edge X-ray absorption fine structure (NEXAFS) spectra for the C K-edge, and core level photoemission spectroscopy (CLPES). Moreover, we observed that furan molecules adsorbed on graphene could be used for chemical functionalization via the lone pair electrons of the oxygen group, allowing chemical doping. We also found that furan spontaneously form rings with one of three different bonding configurations and the electronic properties of the ring formed by furan on graphene can be described using by AFM, NEXAFS and CLPES, respectively.

본 연구 그룹은 6H-SiC (0001)에서 성장시킨 그라핀 층에 흡착된 퓨란(furan)의 고리 형성과 전자적 성질을 원자 힘 현미경(Atomic Force Microscope : AFM), C K-edge에 대한 Near Edge X-ray Absorption Fine Structure (NEXAFS) 스펙트럼, 핵심부 준위 광전자 분광스펙트럼(Core-level Photoemission Spectroscopy : CLPES)을 이용하여 연구했다. 우리는 그라핀위에 흡착된 퓨란 분자들이 화학적 도핑이 가능한 산소기의 홀 전자쌍을 통하여 그라핀의 특성을 조절할 수 있는 화학적 기능화에 이용될 수 있다는 것을 알아냈다. 또한, 퓨란이 자발적으로 세 가지의 다른 결합 구조들 중 하나로 고리를 형성한다는 것과 그라핀 위에 퓨란에 의해 형성된 고리의 전자적 성질들이 AFM, NEXAFS, CLPES를 이용하여 각각 설명될 수 있다는 것을 보여주었다.

Keywords

References

  1. A. K. Geim and Novoselov, Nature Materials 6, 183 (2007). https://doi.org/10.1038/nmat1849
  2. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, Ph. N. First, and W. A. de Heer, Science 312, 1191 (2006). https://doi.org/10.1126/science.1125925
  3. Y. B. Zhang, Y. -W. Tan, H. L. Stormer, and Ph. Kim, Nature 438, 201 (2005). https://doi.org/10.1038/nature04235
  4. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 951 (2006). https://doi.org/10.1126/science.1130681
  5. M. Delamar, R. Hitmi, J. Pinson, and J. M. Saveant, J. Am. Chem. Soc. 114, 5883 (1992). https://doi.org/10.1021/ja00040a074
  6. D. Ugart, Nature 359, 707 (1992). https://doi.org/10.1038/359707a0
  7. F. Banhart and P. M. Ajayan, Nature 382, 433 (1996). https://doi.org/10.1038/382433a0
  8. M. Terrones, H. Terrones, F. Banhart, J. -C. Charlier, and P. M. Ajayan, Science 288, 1226 (2000). https://doi.org/10.1126/science.288.5469.1226
  9. J. H. Choi, H. G. Lee, K. -J. Kim, B. S. Kim, and S. H. Kim, J. Phys. Chem. Lett. 1, 505 (2010). https://doi.org/10.1021/jz900351w
  10. J. H. Choi, K. -J. Kim, B. S. Kim, H. G. Lee, and S. H. Kim, J. Phys. Chem. C. 113, 9433 (2009). https://doi.org/10.1021/jp9010444
  11. A. Zobelli, A. Gloter, C. P. Ewels, G. Seifert, and C. Colliex, Phys. Rev. B 75, 245402 (2007). https://doi.org/10.1103/PhysRevB.75.245402
  12. K. -J. Kim, H. Lee, J. -H. Choi, H. -K. Lee, T. -H. Kang, B. Kim, and S. Kim, J. Phys. : Condens. Matter, 20, 225017 (2008). https://doi.org/10.1088/0953-8984/20/22/225017
  13. B. C. Lee, Y. U. Jeong, S. O. Cho, J. Lee, S. Miginsky, and G. Kulipanov, Nuclear Instruments and Methods in Physics Research A 429, 352 (1999). https://doi.org/10.1016/S0168-9002(99)00086-8
  14. H. -K. Lee, J. -H. Han, K. -J. Kim, T. -H. Kang, and B. Kim, Surf. Sci. 601, 1456 (2007). https://doi.org/10.1016/j.susc.2006.12.086
  15. J. Stohr, NEXAFS Spectroscopy, (Springer, New York, 1992).
  16. C. Jeon, J. H. Nam, W. Song, C. -Y. Park, J. R. Ahn, M. -C. Jung, H. J. Shin, Y. H. Han, and B. C. Lee, Appl. Phys. Lett. 91, 111910 (2007). https://doi.org/10.1063/1.2783483
  17. J. -S. Kim, M. Ree, S. W. Lee, W. Oh, S. Baek, B. Lee, T. J. Shin, K. J. Kim, B. Kim, and J. Luning, Journal of Catalysis 218, 386 (2003).
  18. K. V. Emtsev, F. Speck, Th. Seyller, L. Ley, and J. D. Riley, Phys. Rev. B 77, 155303 (2008). https://doi.org/10.1103/PhysRevB.77.155303
  19. C. Coletti, C. Riedl, D. S. Lee, B. Krauss, L. Patthey, K. von Klizing, J. H. Smet, and U. Starke, Phys. Rev. B 81, 235401 (2010). https://doi.org/10.1103/PhysRevB.81.235401
  20. H. He, J. Klinowski, M. Foster, and A. Lerf, Chem. Phys. Lett. 287, 53 (1998). https://doi.org/10.1016/S0009-2614(98)00144-4
  21. J. -L. Li, K. N. Kundin, M. J. McAllister, R. K. Prud'homme, I. A. Aksay, and R. Car, Phys. Rev. Lett. 96, 176101 (2006). https://doi.org/10.1103/PhysRevLett.96.176101