Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.4.252

Ring Formation of Furan on Epitaxial Graphene  

Kim, Ki-Jeong (Pohang Accelerator Laboratory, POSTECH)
Yang, Se-Na (Department of Chemistry, Sookmyung Women's University)
Park, Young-Chan (Department of Chemistry, Sookmyung Women's University)
Lee, Han-Koo (Pohang Accelerator Laboratory, POSTECH)
Kim, Bong-Soo (Pohang Accelerator Laboratory, POSTECH)
Lee, Han-Gil (Department of Chemistry, Sookmyung Women's University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.4, 2011 , pp. 252-257 More about this Journal
Abstract
The ring formation and electronic properties of furan adsorbed on graphene layers grown on 6H-SiC (0001) has been investigated using atomic force microscopy (AFM), near edge X-ray absorption fine structure (NEXAFS) spectra for the C K-edge, and core level photoemission spectroscopy (CLPES). Moreover, we observed that furan molecules adsorbed on graphene could be used for chemical functionalization via the lone pair electrons of the oxygen group, allowing chemical doping. We also found that furan spontaneously form rings with one of three different bonding configurations and the electronic properties of the ring formed by furan on graphene can be described using by AFM, NEXAFS and CLPES, respectively.
Keywords
Furan; Graphene; Core level photoemission spectroscopy; Near edge X-ray absorption fine structure; Ring formation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Coletti, C. Riedl, D. S. Lee, B. Krauss, L. Patthey, K. von Klizing, J. H. Smet, and U. Starke, Phys. Rev. B 81, 235401 (2010).   DOI
2 H. He, J. Klinowski, M. Foster, and A. Lerf, Chem. Phys. Lett. 287, 53 (1998).   DOI   ScienceOn
3 A. K. Geim and Novoselov, Nature Materials 6, 183 (2007).   DOI
4 Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, Ph. N. First, and W. A. de Heer, Science 312, 1191 (2006).   DOI   ScienceOn
5 Y. B. Zhang, Y. -W. Tan, H. L. Stormer, and Ph. Kim, Nature 438, 201 (2005).   DOI
6 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 951 (2006).   DOI   ScienceOn
7 M. Delamar, R. Hitmi, J. Pinson, and J. M. Saveant, J. Am. Chem. Soc. 114, 5883 (1992).   DOI
8 D. Ugart, Nature 359, 707 (1992).   DOI
9 F. Banhart and P. M. Ajayan, Nature 382, 433 (1996).   DOI
10 M. Terrones, H. Terrones, F. Banhart, J. -C. Charlier, and P. M. Ajayan, Science 288, 1226 (2000).   DOI
11 B. C. Lee, Y. U. Jeong, S. O. Cho, J. Lee, S. Miginsky, and G. Kulipanov, Nuclear Instruments and Methods in Physics Research A 429, 352 (1999).   DOI
12 J. -L. Li, K. N. Kundin, M. J. McAllister, R. K. Prud'homme, I. A. Aksay, and R. Car, Phys. Rev. Lett. 96, 176101 (2006).   DOI
13 J. H. Choi, H. G. Lee, K. -J. Kim, B. S. Kim, and S. H. Kim, J. Phys. Chem. Lett. 1, 505 (2010).   DOI
14 J. H. Choi, K. -J. Kim, B. S. Kim, H. G. Lee, and S. H. Kim, J. Phys. Chem. C. 113, 9433 (2009).   DOI
15 A. Zobelli, A. Gloter, C. P. Ewels, G. Seifert, and C. Colliex, Phys. Rev. B 75, 245402 (2007).   DOI
16 K. -J. Kim, H. Lee, J. -H. Choi, H. -K. Lee, T. -H. Kang, B. Kim, and S. Kim, J. Phys. : Condens. Matter, 20, 225017 (2008).   DOI
17 H. -K. Lee, J. -H. Han, K. -J. Kim, T. -H. Kang, and B. Kim, Surf. Sci. 601, 1456 (2007).   DOI
18 J. Stohr, NEXAFS Spectroscopy, (Springer, New York, 1992).
19 C. Jeon, J. H. Nam, W. Song, C. -Y. Park, J. R. Ahn, M. -C. Jung, H. J. Shin, Y. H. Han, and B. C. Lee, Appl. Phys. Lett. 91, 111910 (2007).   DOI
20 J. -S. Kim, M. Ree, S. W. Lee, W. Oh, S. Baek, B. Lee, T. J. Shin, K. J. Kim, B. Kim, and J. Luning, Journal of Catalysis 218, 386 (2003).
21 K. V. Emtsev, F. Speck, Th. Seyller, L. Ley, and J. D. Riley, Phys. Rev. B 77, 155303 (2008).   DOI