• 제목/요약/키워드: near transfer

Search Result 873, Processing Time 0.034 seconds

Evaluation of Convective Heat Transfer Performance of Twist-Vane Spacer Grid in Rod Bundle Flow (봉다발 유동 내 비틀림 혼합날개 지지격자의 대류열전달 성능 평가)

  • Lee, Chi Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.157-164
    • /
    • 2016
  • The performance of convective heat transfer in rod bundle flow was experimentally evaluated using a twist-vane spacer grid. A $4{\times}4$ square-arrayed rod bundle was prepared as the test section, with a pitch-to-diameter ratio(P/D) of ~1.35. To check the convective heat transfer performance, the circumferential and longitudinal variations in rod-wall temperatures were measured downstream of the twist-vane spacer grid. In the circumferential measurements, the rod-wall temperature toward the twist-vane tip showed the lowest value, which might be due to the deflected water flow caused by the twist-vane. On the other hand, the wall temperature of the longitudinal measurements near the twist-vane spacer grid decreased dramatically, which implies that the convective heat transfer performance was enhanced. A heat transfer enhancement of ~35 % was achieved near downstream of the twist-vane spacer grid, as compared with the upstream value. Based on the present experimental data, a correlation for predicting the heat transfer performance of a twist-vane spacer grid was proposed.

Heat Transfer Correlation for the Forced Convective Flow on Single Circular Fin-tube Heat Exchanger

  • Kang Hie-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.1
    • /
    • pp.14-18
    • /
    • 2006
  • This study was performed to investigate the heat transfer characteristics of the circular fin-tube heat exchanger. This paper contains the experimental data for the seven kinds of fin geometries. The correlation of Stasiulevicius agreed with the experimental data at high Reynolds number, however not well at low Reynolds number. The Nusselt number was well correlated with Graetz number, and showed a transition near Gz=10. An empirical correlation proposed in the present study agreed well with the experimental data.

Experimental Study on the Development of Nozzle-Type Diffusers for Submersible Aeration Process (수중폭기용 노즐형 산기관 개발에 관한 실험적 연구)

  • Rhim, Dong-Ryul;Cho, Nam-Hyo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.604-608
    • /
    • 2004
  • Experimental study was conducted to increase the oxygen transfer efficiency of air diffusers in clean water. By measuring the bubble size from the bubbly two-phase flow visualization with several air diffusers the size of air bubbles near the top surface of aeration tank seems to be independent on the diffuser types. Considering design parameters for the better breakup of larger bubbles around the air diffusers, advanced conceptual air diffusers using nozzle-type throat showing the higher oxygen transfer efficiencies were made.

  • PDF

Local Heat Transfer Characteristics in the Wake Region of a Circular Cylinder (원형 실린더 후류 영역의 국소 열전달 특성)

  • Chang Byong Hoon
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.30-36
    • /
    • 2005
  • This paper reports the experimental study of the heat transfer characteristics of the wake region behind a cylinder in cross flow. Local heat transfer coefficient was measured from the stagnation point (θ=0°) to 180°, and the variation of Nu in the axial direction along the cylinder was also studied. The results show that the heft transfer rate at the rear (θ=180°) near the duct wall can increase as much as 58% over the 2 dimensional value at the center of the duct. The heat transfer profiles in the wake region also show distinct effects of the aspect ratio and the heat transfer boundary condition.

Effects of Transfer Gate on the Photocurrent Characteristics of Gate/Body-Tied MOSFET-Type Photodetector

  • Jang, Juneyoung;Seo, Sang-Ho;Kong, Jaesung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.12-15
    • /
    • 2022
  • In this study, we studied the effects of transfer gate on the photocurrent characteristics of gate/body-tied (GBT) metal-oxide semiconductor field-effect transistor (MOSFET)-type photodetector. The GBT MOSFET-type photodetector has high sensitivity owing to the amplifying characteristic of the photocurrent generated by light. The transfer gate controls the flow of photocurrent by controlling the barrier to holes, thereby varying the sensitivity of the photodetector. The presented GBT MOSFET-type photodetector using a built-in transfer gate was designed and fabricated via a 0.18-㎛ standard complementary metal-oxide-semiconductor (CMOS) process. Using a laser diode, the photocurrent was measured according to the wavelength of the incident light by adjusting the voltage of the transfer gate. Variable sensitivity of the presented GBT MOSFET-type photodetector was experimentally confirmed by adjusting the transfer gate voltage in the range of 405 nm to 980 nm.

Effect of Pressure Variations on Augmentation of Heat Transfer by Ultrasonic Vibrations (초음파 가진시 압력변동이 열전달 향상에 미치는 영향)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1069-1074
    • /
    • 2004
  • This study investigated the effect of pressure variations on augmentation of heat transfer when the ultrasonic waves were applied. The augmentation ratio of heat transfer was experimentally investigated and was compared with the profiles of pressure distributions calculated applying a coupled finite element-boundary element method (coupled FE-BEM). As the ultrasonic intensities increase from 70W to 340W, the velocity of the liquid paraffin is found to increase as well as kinetic energy, This physical behavior known as quasi-Eckart streaming results from acoustic pressure variations in the liquid. Especially, the higher acoustic pressure distribution near two ultrasonic transducers develops more intensive flow (quasi-Eckart streaming), destroying the flow instability. Also, the profile of acoustic pressure variation is consistent with that of augmentation of heat transfer. This mechanism is believed to increase the ratio of hear transfer coefficient.

  • PDF

A Study on Correlation Between Pressure Variations and Augmentation of Heat Transfer in Acoustic Fields

  • Oh, Yool-Kwon;Yang, Ho-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1630-1639
    • /
    • 2004
  • The present paper investigated the correlation between the acoustic pressure variations and the augmentation of heat transfer in the ultrasonic induced acoustic fields. The augmentation ratios of heat transfer coefficient were experimentally measured and were compared with the profile of the pressure distribution in the acoustic fields predicted by numerical analysis. For numerical analysis, a coupled finite element-boundary element method (coupled FE-BEM) was applied. The results of the present study reveal that the acoustic pressure is higher near two ultrasonic transducers than other points where no ultrasonic transducer was installed. The augmentation trend of heat transfer is similar with the profile of the acoustic pressure distribution. In other words, as the acoustic pressure increases, the higher augmentation ratio of heat transfer is obtained. Numerical and experimental studies clearly show that the acoustic pressure variations are closely related to the augmentation of heat transfer in the acoustic fields.

Numerical Study on Combined Heat Transfer in NIR Dryer for Agricultural and Marine Products (근적외선 농수산물 건조기의 복합열전달특성에 관한 수치적 연구)

  • Choi, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.5 s.118
    • /
    • pp.395-402
    • /
    • 2006
  • Mixed heat transfer in an indirected NIR (Near Infrared Ray) dry chamber was investigated numerical analysis. It is Important that the miked heat transfer effects on double parameters which the Reynolds number and the position of emit lamp. Reynolds number are based on the outer diameter of the cylinder range from 103 to $30{\times}105$. Four difference heat transfer regimes of behavior are apparent: forced convection and radiation on the outer surface of the cylinder, pure conduction, pure natural convection and radiation between lamp surface and inner surface of the cylinder. The temperature and flow patterns are illustrated by iso-contour lines for the double parameters. Also presented are results on the convective heat transfer flux and the radiative heat transfer flux as increased with Reynolds number.

Mass Transfer in an Adiabatic Rectifier of Ammonia-Water Absorption System

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.69-79
    • /
    • 2000
  • Falling film rectification involves simultaneous heat and mass transfer between vapor and solution film. In the present work, the adiabatic rectification process of ammonia-water vapor by the falling solution film on the vertical plate was investigated. The continuity momentum, energy and diffusion equations for the solution film and the vapor mixture were formulated in integral forms and solved numerically, The model could predict the film thickness, the pressure gradient, and the mass transfer rate. The effects of Reynolds number and ammonia concentration of solution and vapor mixture, rectifier length, and the enhancement of mass transfer coefficient in each phases were investigated. The stripping of water in vapor mixture occurred near the entrance of ammonia solution, which imposed the proper size of an adiabatic rectifier. Rectifier efficiency increased as film Reynolds number increased and as vapor mixture Reynolds number decreased. The improvement of rectifier efficiency was significant with the enhancement of mass transfer coefficient in falling film.

  • PDF

Measurement of Average Pool Boiling Heat Transfer Coefficient on Near-Horizontal Tube (수평 가까운 튜브 표면의 평균 풀비등 열전달계수의 측정)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.81-88
    • /
    • 2014
  • An experimental study is performed to obtain an average heat transfer coefficient around the perimeter of a near horizontal tube. For the test a stainless steel tube of 50.8 mm diameter submerged in water at atmospheric pressure is used. Both subcooled and saturated pool boiling conditions are considered and the inclination angle of the tube is changed from the horizontal position to $9^{\circ}$ in steps of $3^{\circ}$. In saturated water, the local boiling heat transfer coefficient at the azimuthal angle of $90^{\circ}$ from the tube bottom can be regarded as the average of the coefficients regardless of the tube inclination angles. However, when the water is subcooled the location for the average heat transfer coefficient depends on the inclination angle and the heat flux. It is explained that the major mechanisms changing the heat transfer are closely related with the intensity of the liquid agitation and the generation of big size bubbles through bubble coalescence.