• Title/Summary/Keyword: ncRNA(noncoding RNA)

Search Result 6, Processing Time 0.021 seconds

BC200 RNA: An Emerging Therapeutic Target and Diagnostic Marker for Human Cancer

  • Shin, Heegwon;Kim, Youngmi;Kim, Meehyein;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.993-999
    • /
    • 2018
  • One of the most interesting findings from genome-wide expression analysis is that a considerable amount of noncoding RNA (ncRNA) is present in the cell. Recent studies have identified diverse biological functions of ncRNAs, which are expressed in a much wider array of forms than proteins. Certain ncRNAs associated with diseases, in particular, have attracted research attention as novel therapeutic targets and diagnostic markers. BC200 RNA, a 200-nucleotide ncRNA originally identified as a neuron-specific transcript, is abnormally over-expressed in several types of cancer tissue. A number of recent studies have suggested mechanisms by which abnormal expression of BC200 RNA contributes to the development of cancer. In this article, we first provide a brief review of a recent progress in identifying functions of BC200 RNA in cancer cells, and then offer examples of other ncRNAs as new therapeutic targets and diagnostic markers for human cancer. Finally, we discuss future directions of studies on BC200 RNA for new cancer treatments.

Incredible RNA: Dual Functions of Coding and Noncoding

  • Nam, Jin-Wu;Choi, Seo-Won;You, Bo-Hyun
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.367-374
    • /
    • 2016
  • Since the RNA world hypothesis was proposed, a large number of regulatory noncoding RNAs (ncRNAs) have been identified in many species, ranging from microorganisms to mammals. During the characterization of these newly discovered RNAs, RNAs having both coding and noncoding functions were discovered, and these were considered bifunctional RNAs. The recent use of computational and high-throughput experimental approaches has revealed increasing evidence of various sources of bifunctional RNAs, such as protein-coding mRNAs with a noncoding isoform and long ncRNAs bearing a small open reading frame. Therefore, the genomic diversity of Janusfaced RNA molecules that have dual characteristics of coding and noncoding indicates that the functional roles of RNAs have to be revisited in cells on a genome-wide scale. Such studies would allow us to further understand the complex gene-regulatory network in cells. In this review, we discuss three major genomic sources of bifunctional RNAs and present a handful of examples of bifunctional RNA along with their functional roles.

Effects of different target sites on antisense RNA-mediated regulation of gene expression

  • Park, Hongmarn;Yoon, Yeongseong;Suk, Shinae;Lee, Ji Young;Lee, Younghoon
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.619-624
    • /
    • 2014
  • Antisense RNA is a type of noncoding RNA (ncRNA) that binds to complementary mRNA sequences and induces gene repression by inhibiting translation or degrading mRNA. Recently, several small ncRNAs (sRNAs) have been identified in Escherichia coli that act as antisense RNA mainly via base pairing with mRNA. The base pairing predominantly leads to gene repression, and in some cases, gene activation. In the current study, we examined how the location of target sites affects sRNA-mediated gene regulation. An efficient antisense RNA expression system was developed, and the effects of antisense RNAs on various target sites in a model mRNA were examined. The target sites of antisense RNAs suppressing gene expression were identified, not only in the translation initiation region (TIR) of mRNA, but also at the junction between the coding region and 3' untranslated region. Surprisingly, an antisense RNA recognizing the upstream region of TIR enhanced gene expression through increasing mRNA stability.

Use of cutting-edge RNA-sequencing technology to identify biomarkers and potential therapeutic targets in canine and feline cancers and other diseases

  • Youngdong Choi;Min-Woo Nam;Hong Kyu Lee;Kyung-Chul Choi
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.71.1-71.12
    • /
    • 2023
  • With the growing interest in companion animals and the rapidly expanding animal healthcare and pharmaceuticals market worldwide. With the advancements in RNAsequencing (RNA-seq) technology, it has become a valuable tool for understanding biological processes in companion animals and has multiple applications in animal healthcare. Historically, veterinary diagnoses and treatments relied solely on clinical symptoms and drugs used in human diseases. However, RNA-seq has emerged as an effective technology for studying companion animals, providing insights into their genetic information. The sequencing technology has revealed that not only messenger RNAs (mRNAs) but also noncoding RNAs (ncRNAs) such as long ncRNAs and microRNAs can serve as biomarkers. Based on the examination of RNA-seq applications in veterinary medicine, particularly in dogs and cats, this review concludes that RNA-seq has significant potential as a diagnostic and research tool. It has enabled the identification of potential biomarkers for cancer and other diseases in companion animals. Further research and development are required to maximize the utilization of RNA-seq for improved disease diagnosis and therapeutic targeting in companion animals.

Complete genome sequence of Cohnella sp. HS21 isolated from Korean fir (Abies koreana) rhizospheric soil (구상나무 근권 토양으로부터 분리된 Cohnella sp. HS21의 전체 게놈 서열)

  • Jiang, Lingmin;Kang, Se Won;Kim, Song-Gun;Jeong, Jae Cheol;Kim, Cha Young;Kim, Dae-Hyuk;Kim, Suk Weon;Lee, Jiyoung
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.171-173
    • /
    • 2019
  • The genus Cohnella, which belongs to the family Paenibacillaceae, inhabits a wide range of environmental niches. Here, we report the complete genome sequence of Cohnella sp. HS21, which was isolated from the rhizospheric soil of Korean fir (Abies koreana) on the top of Halla Mountain in the Republic of Korea. Strain HS21 features a 7,059,027 bp circular chromosome with 44.8% GC-content. Its genome contains 5,939 protein-coding genes, 78 transfer RNA (tRNA) genes, 27 ribosomal RNA (rRNA) genes, 4 noncoding RNA genes (ncRNA), and 90 pseudogenes. The bacterium contains antibiotic-related gene clusters and genes encoding plant cell wall-degrading enzymes.

The Biological Functions of Plant Long Noncoding RNAs (식물의 긴비암호화 RNA들의 생물학적 기능)

  • Kim, Jee Hye;Heo, Jae Bok
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1097-1104
    • /
    • 2016
  • With the development of next generation sequencing (NGS), large numbers of transcriptional molecules have been discovered. Most transcripts are non -coding RNAs (ncRNAs). Among them, long non-coding RNAs (lncRNAs) with more than 200 nucleotides represent functional RNA molecule that will not be translated into protein. In plants, lncRNAs are transcribed by RNA polymerase II (Pol II) or Pol III, Pol VI and Pol V. After transcription of these lncRNAs, more RNA processing mechanisms such as splicing and polyadenylation occurs. The expression of plant lncRNAs is very low and is tissue specific. However, these lncRNAs are strongly induced by specific external stimuli. Because different external stimuli including environmental stresses induce a large number of plant lncRNAs, these lncRNAs have been gradually considered as new regulatory factors of various biological and development processes such as epigenetic repression, chromatin modification, target mimicry, photomorphogenesis, protein relocalization, environmental stress response, pathogen infection in plants. Moreover, some lncRNAs act as precursor of short RNAs. Although a large number of lncRNAs have been predicted and identified in plants, our current understanding of the biological function of these lncRNAs is still limited and their detailed regulatory mechanisms should be elucidated continuously. Here, we reviewed the biogenesis and regulation mechanisms of lncRNAs and summarized the molecular functions unraveled in plants.