• Title/Summary/Keyword: navigation simulation

Search Result 1,827, Processing Time 0.023 seconds

Simulation System Development for Verification of Autonomous Navigation Algorithm Considering Near Real-Time Maritime Traffic Information (준실시간 해상교통 정보를 반영한 자율운항 알고리즘 검증용 시뮬레이션 시스템 개발)

  • Hansol Park;Jungwook Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.473-481
    • /
    • 2023
  • In this study, a simulation system was developed to verify autonomous navigation algorithm in complex maritime traffic areas. In particular, real-world maritime traffic scenario was applied by considering near real-time maritime traffic information provided by Korean e-Navigation service. For this, a navigation simulation system of Unmanned Surface Vehicle (USV) was integrated with an e-Navigation equipment, called Electronic Chart System (ECS). To verify autonomous navigation algorithm in the simulation system, initial conditions including initial position of an own ship and a set of paths for the ship to follow are assigned by an operator. Then, considering real-world maritime traffic information obtained from the service, the simulation is implemented in which the ship repeatedly travels by avoiding surrounding obstacles (e.g., approaching ships). In this paper, the developed simulation system and its application on verification of the autonomous navigation algorithm in complex maritime traffic areas are introduced.

Design of Orbit Simulation Tool for Lunar Navigation Satellite System

  • Hojoon Jeong;Jaeuk Park;Junwon Song;Minjae Kang;Changdon Kee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.335-342
    • /
    • 2023
  • Lunar Navigation Satellite System refers to a constellation of satellite providing PNT services on the moon. LNSS consists of main satellite and navigation satellites. Navigation satellites orbiting around the moon and a main satellite moves the area between the moon and the L2 point. The navigation satellite performs the same role as the Earth's GNSS satellite, and the main satellite communicates with the Earth for time synchronization. Due to the effect of the non-uniform shape of the moon, it is necessary to focus on the influence of the lunar gravitational field when designing the orbit simulation for navigation satellite. Since the main satellite is farther away from the moon than the navigation satellite, both the earth's gravity and the moon's gravity must be considered simultaneously when designing the orbit simulation for main satellite. Therefore, the main satellite orbit simulation must be designed through the three-body problem between the Earth, the moon, and the main satellite. In this paper, the orbit simulation tool for main satellite and navigation satellite required for LNSS was designed. The orbit simulation considers the environment characteristics of the moon. As a result of comparing long-term data (180 days) with the commercial program GMAT, it was confirmed that there was an error of about 1 m.

Study of Situation Prediction Simulation for Navigation Information System of Ship (선박의 항행정보시스템을 위한 상황 예측 시뮬레이션 방안 연구)

  • Yi, Mi-Ra
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.127-135
    • /
    • 2010
  • Modern marine navigation requires officers on the bridge to monitor a torrent of data on both the insides and outsides of the ship from numerous useful devices. But despite these tools, navigators can still find it difficult to make a safe decision for two reasons: one is that too much data if provided too quickly tends to cause fatigue and overwhelm the officer, and the other is that any inconsistency across data from several different types of devices can lead to confusion. Indeed, the fact remains that the many marine accidents can be attributed to human error, and hence there is a strong need for decision-support tools for marine navigation. One technique of providing decision support is through the use of simulation to evaluate or predict system dynamics over time using an accurate model. This paper, as a simulation method for risk prediction for a navigation safety information system of ship, suggests a navigation prediction simulation system using various knowledge bases and discrete event simulation methodology, and supports the validity of the system through the examples of components in a restricted navigation situation scenario.

Analysis of Integrated Navigation Performance for Sensor Selection of Unmanned Underwater Vehicle (UUV) (무인잠수정 센서 선정을 위한 복합항법 성능 분석)

  • Yoo, Tae-Suk;Kim, Moon Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.566-573
    • /
    • 2014
  • This paper presents the results of an integrated navigation performance analysis for selecting the sensor of an unmanned underwater vehicle (UUV) using Monte Carlo numerical simulation. An inertial measurement unit (IMU) and Doppler velocity log (DVL) are considered to build the integrated navigation system. The position error and price of the sensor are selected as performance indices to evaluate the volunteer integrated navigation systems. Monte-Carlo simulation is introduced to analyze the circular error probability (CEP) and its variance. Simulation results provide the proper sensor combination for integrated navigation in relation to the performance and price.

A Study on the HWIL Simulation System of the Flight Object including Inertial Navigation System (관성항법장치가 포함된 비행체의 HWIL 시뮬레이션 시스템 개발 연구)

  • Lee, Ayeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.349-360
    • /
    • 2018
  • This paper proposes various methods for constructing a HWIL simulation system including Inertial Navigation System(INS) and Guidance Control Unit(GCU) under the assumption that the INS identifies the initial attitude of an aviation body through its own alignment and that it is a package consisting of an inertial sensor and a navigation computation module. This paper also presents a real-time computing technology and a way to calculate the command of the Flight Motion System(FMS) analogous to the acutal flight environment. The proposed HWIL simulation system is constructed by applying the above-mentioned methods and the results of running a series of simulations confirm high effectiveness and usefulness of the system. Finally, minor error factors that could be acquired only in HWIL simulation Environment are analyzed.

Vessel and Navigation Modeling and Simulation based on DEVS Formalism : Case Studies in Collision Avoidance Simulation of Vessels by COLREG (DEVS 형식론 기반의 선박 항해 모델링 및 시뮬레이션 (II) : COLREG 기반 선박 충돌회피 시뮬레이션을 통한 사례연구)

  • Hwang, Hun-Gyu;Woo, Sang-Min;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1700-1709
    • /
    • 2019
  • Recently, many researches have been under way to develop systems (services) to support the safety navigation of ships, and in these studies, common difficulties have been encountered in assessing the usefulness and effectiveness of the developed system. To solve these problems, we propose the DEVS-based ship navigation modeling and simulation technique. Following the preceding study, we analyze the COLREG rules and reflected to officer and helmsman agent models for decision making. Also we propose estimation and interpolation techniques to adopt the motion characteristics of the actual vessel to simulation. In addition, we implement the navigation simulation system to reflect the designed proposed methods, and we present five-scenarios to verify the developed simulation system. And we conduct simulations according to each scenario and the results were reconstructed. The simulation results confirm that the components modelled in each scenario enable to operate according to the navigation relationships.

Development and Performance Verification of Real-time Hybrid Navigation System for Autonomous Underwater Vehicles

  • Kim, Hyun Ki;Jung, Woo Chae;Kim, Jeong Won;Nam, Chang Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.97-107
    • /
    • 2016
  • Military Autonomous Underwater Vehicle (AUV) is utilized to search a mine under the sea. This paper presents design and performance verification of real-time hybrid navigation system for AUV. The navigation system uses Doppler Velocity Log (DVL) integration method to correct INS error in underwater. When the AUV is floated on the water, the accumulated error of navigation algorithm is corrected using position/velocity of GPS. The navigation algorithm is verified using 6 Degree Of Freedom (DOF) simulation, Program In the Loop Simulation (PILS). Finally, the experiments are performed in real sea environment to prove the reliability of real-time hybrid navigation algorithm.

Two-Dimensional Navigation Error for Geometry of Landmark in Line-Of-Sight Measurement Based Vision Navigation System (시선각 측정기반 비전항법시스템에서 랜드마크의 기하학적 배치에 대한 2차원 항법오차)

  • Kim, Young-Sun;Ji, Hyun-Min;Hwang, Dong-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.479-484
    • /
    • 2012
  • Geometric effect of landmarks to the navigation error is investigated in the two-dimensional line-of-sight measurement based vision navigation system. DOP is derived between line-of-sight measurement error and navigation solution error. For cases of three landmarks in an area, variations of the DOP were observed through computer simulations. Vision navigation system experiments were performed for the cases. Simulation and experimental results show that navigation solution errors have similar trend to DOP values of the simulation.

INS/vision Integrated Navigation System in Environments with Insufficient Number of Landmarks (랜드마크가 충분하지 않은 환경에서의 관성/비전 통합항법시스템)

  • Kim, Youngsun;Hwang, Dong-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.123-131
    • /
    • 2014
  • An INS/vision integrated navigation algorithm is proposed for environments with insufficient number of landmarks. In the proposed algorithm, the raw measurements on the focal plane are directly used in order to cope with the situation where the number of landmarks are not sufficient. In addition to this, the combination of landmarks, which has smallest value of DOP, is used in the update of measurement in order to improve navigation performance. In order to evaluate the performance of the proposed integrated navigation system, Monte-Carlo simulation and van test was performed. The results of the simulation and experiment show that the proposed navigation system gives better navigation performance than an INS/vision integrated navigation system which does not use the raw measurements on the focal plane and the navigation system provides navigation solutions even in environments with insufficient number of landmarks.

A Study on the RFID Tag-Floor Based Navigation (RFID 태그플로어 방식의 내비게이션에 관한 연구)

  • Choi Jung-Wook;Oh Dong-Ik;Kim Seung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.968-974
    • /
    • 2006
  • We are moving into the era of ubiquitous computing. Ubiquitous Sensor Network (USN) is a base of such computing paradigm, where recognizing the identification and the position of objects is important. For the object identification, RFID tags are commonly used. For the object positioning, use of sensors such as laser and ultrasonic scanners is popular. Recently, there have been a few attempts to apply RFID technology in robot localization by replacing the sensors with RFID readers to achieve simpler and unified USN settings. However, RFID does not provide enough sensing accuracy for some USN applications such as robot navigation, mainly because of its inaccuracy in distance measurements. In this paper, we describe our approach on achieving accurate navigation using RFID. We solely rely on RFID mechanism for the localization by providing coordinate information through RFID tag installed floors. With the accurate positional information stored in the RFID tag, we complement coordinate errors accumulated during the wheel based robot navigation. We especially focus on how to distribute RFID tags (tag pattern) and how many to place (tag granularity) on the RFID tag-floor. To determine efficient tag granularities and tag patterns, we developed a simulation program. We define the error in navigation and use it to compare the effectiveness of the navigation. We analyze the simulation results to determine the efficient granularities and tag arrangement patterns that can improve the effectiveness of RFID navigation in general.