The laser Doppler technique is well-established as a velocity measurement technique of high precision for flow velocity. Recently, the laser Doppler technique has also been used to measure acceleration of fluid particles. Acceleration is interesting from a fluid mechanics point of view, since the Navier Stokes equations, specifically the left-hand-side, are formulated in terms of fluid acceleration. Further, there are several avenues to estimating the dissipation rate using the acceleration. However such measurements place additional demands on the design of the optical system; in particular fringe non-uniformity must be held below about 0.0001 to avoid systematic errors. Relations expressing fringe divergence as a function of the optical parameters of the system have been given in the literature; however, direct use of these formulae to minimize fringe divergence lead either to very large measurement volumes or to extremely high intersection angles. This dilemma can be resolved by using an off-axis receiving arrangement, in which the measurement volume is truncated by a pinhole in front of the detection plane. In the present study an optical design study is performed for optimizing laser Doppler systems for fluid acceleration measurements. This is followed by laboratory validation using a round free jet and a stagnation flow, two flows in which either fluid acceleration has been previously measured or in which the acceleration is known analytically. A 90 degree off-axis receiving angle is used with a pinhole or a slit.
A numerical study of a turbulent natural convection in an enclosure with the lattice Boltzmann method (LBM) is presented. The primary emphasis of the present study is placed on investigation of accuracy and numerical stability of the LBM for the turbulent natural convection flow. A HYBRID method in which the thermal equation is solved by the conventional Reynolds averaged Navier-Stokes equation method while the conservation of mass and momentum equations are resolved by the LBM is employed in the present study. The elliptic-relaxation model is employed for the turbulence model and the turbulent heat fluxes are treated by the algebraic flux model. All the governing equations are discretized on a cell-centered, non-uniform grid using the finite-volume method. The convection terms are treated by a second-order central-difference scheme with the deferred correction way to ensure accuracy and stability of solutions. The present LBM is applied to the prediction of a turbulent natural convection in a rectangular cavity and the computed results are compared with the experimental data commonly used for the validation of turbulence models and those by the conventional finite-volume method. It is shown that the LBM with the present HYBRID thermal model predicts the mean velocity components and turbulent quantities which are as good as those by the conventional finite-volume method. It is also found that the accuracy and stability of the solution is significantly affected by the treatment of the convection term, especially near the wall.
본 연구에서는 블레이드 구조 변형 효과를 고려하여 스테이터-로터 상호간섭 케스케이드 모델의 성능평가를 위한 유체-구조 연계해석 시스템을 개발하였다. 고정된 스테이터와 회전하는 로터는 상호간섭 영향이 유동해석에 고려되었으며, 레이놀즈-평균화 난류 방정식인 Spalart-Allmaras 모델과 k-ω SST 난류 모델이 압축성 유동박리 효과를 고려한 유동하중을 예측하기 위해 적용되었다. 정적인 유체-구조 연계해석과 수렴율 증진을 효과적으로 수행하기 위하여 큰 인공 감쇠를 가지는 연계 Newmark 시간적분 기법을 적용하였다. 수치실험을 통해 탄성축 위치에 따른 구조변형 효과가 케스케이드 성능에 미치는 영향을 파악하였다. 구조변형 효과가 고려된 경우 일반적인 강체 블레이드 모델에 대한 성능예측 결과와 다소 차이가 유발될 수 있음을 보였으며 공력탄성학적 영향을 고찰하였다.
In the present study, the Reynolds-averaged Navier-Stokes equations, together with the equations of the $k-{\varepsilon}$ model of turbulence, were solved numerically in a general body-fitted coordinate system for three-dimensional turbulent flows around the six basic shapes of the magnetically levitated train(MAGLEV). The numerical computations were conducted on the MAGLEV model configurations to provide information on shapes of this type very near the elevated track at a constant Reynolds number of $1.48{\times}10^{6}$ based on the body length. The coordinate system was generated by numerically solving a set of Poisson equations. The convective transport equations were discretized using the finite-analytic scheme which employed analytic solutions of the locally-linearized equations. A time marching algorithm was employed to enable future extensions to be made to handle unsteady and fully-elliptic problems. The pressure-velocity coupling was treated with the SIMPLER-algorithm. Of particular interests were wall effect by the elevated track on the aerodynamic forces and flow characteristics of the six models calculated. The results indicated that the half-circle configuration with extended sides and with smooth curvature of sides was desirable because of the low aerodynamic forces and pitching moment. And it was found that the separation bubble was occured at wake region in near the elevated track.
Kateris, D.L.;Fragos, V.P.;Kotsopoulos, T.A.;Martzopoulou, A.G.;Moshou, D.
Wind and Structures
/
제15권6호
/
pp.481-494
/
2012
The greenhouse type metal structures are increasingly used in modern construction of livestock farms because they are less laborious to construct and they provide a more favorable microclimate for the growth of animals compared to conventional livestock structures. A key stress factor for metal structures is the wind. The external pressure coefficient ($c_{pe}$) is used for the calculation of the wind effect on the structures. A high pressure coefficient value leads to an increase of the construction weight and subsequently to an increase in the construction cost. The EC1 in conjunction with EN 13031-1:2001, which is specialized for greenhouses, gives values for this coefficient. This value must satisfy two requirements: the safety of the structure and a reduced construction cost. In this paper, the Navier - Stokes and continuity equations are solved numerically with the finite element method (Galerkin Method) in order to simulate the two dimensional, incompressible, viscous air flow over the vaulted roofs of single span and twin-span with eaves livestock greenhouses' structures, with a height of 4.5 meters and with length of span of 9.6 and 14 m. The simulation was carried out in a wind tunnel. The numerical results of pressure coefficients, as well as, the distribution of them are presented and compared with data from Eurocodes for wind actions (EC1, EN 13031-1:2001). The results of the numerical experiment were close to the values given by the Eurocodes mainly on the leeward area of the roof while on the windward area a further segmentation is suggested.
The lattice Boltzman method (LBM) and the finite difference-based lattice Boltzmann method (FDLBM) are quite recent approaches for simulating fluid flow, which have been proven as valid and efficient tools in a variety of complex flow problems. They are considered attractive alternatives to conventional finite-difference schemes because they recover the Navier-Stokes equations and are computationally more stable, and easily parallelizable. However, most models of the LBM or FDLBM are for incompressible fluids because of the simplicity of the structure of the model. Although some models for compressible thermal fluids have been introduced, these models are for monatomic gases, and suffer from the instability in calculations. A lattice BGK model based on a finite difference scheme with an internal degree of freedom is employed and it is shown that a diatomic gas such as air is successfully simulated. In this research we present a 2-dimensional edge tone to predict the frequency characteristics of discrete oscillations of a jet-edge feedback cycle by the FDLBM in which any specific heat ratio $\gamma$ can be chosen freely. The jet is chosen long enough in order to guarantee the parabolic velocity profile of a jet at the outlet, and the edge is of an angle of $\alpha$=23$^{o}$. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations resulting from periodic oscillation of the jet around the edge.
Aresti, Lazaros;Tutar, Mustafa;Chen, Yong;Calay, Rajnish K.
Wind and Structures
/
제17권6호
/
pp.647-670
/
2013
The paper presents a numerical approach to study of fluid flow characteristics and to predict performance of wind turbines. The numerical model is based on Finite-volume method (FVM) discretization of unsteady Reynolds-averaged Navier-Stokes (URANS) equations. The movement of turbine blades is modeled using moving mesh technique. The turbulence is modeled using commonly used turbulence models: Renormalization Group (RNG) k-${\varepsilon}$ turbulence model and the standard k-${\varepsilon}$ and k-${\omega}$ turbulence models. The model is validated with the experimental data over a large range of tip-speed to wind ratio (TSR) and blade pitch angles. In order to demonstrate the use of numerical method as a tool for designing wind turbines, two dimensional (2-D) and three-dimensional (3-D) simulations are carried out to study the flow through a small scale Darrieus type H-rotor Vertical Axis Wind Turbine (VAWT). The flows predictions are used to determine the performance of the turbine. The turbine consists of 3-symmetrical NACA0022 blades. A number of simulations are performed for a range of approaching angles and wind speeds. This numerical study highlights the concerns with the self-starting capabilities of the present VAWT turbine. However results also indicate that self-starting capabilities of the turbine can be increased when the mounted angle of attack of the blades is increased. The 2-D simulations using the presented model can successfully be used at preliminary stage of turbine design to compare performance of the turbine for different design and operating parameters, whereas 3-D studies are preferred for the final design.
2차원 비정상의 RANS 방정식을 이용하여 피치가 고정된 3개 혹은 4개의 날개(hydrofoil)를 가지는 조류발전용 수직축 터빈주위의 비정상 유동장 해석을 수행하였다. 상용수치해석코드인 Fluent를 이용하여, 균일류에 놓인 $NACA65_3$-018날개에 대하여 받음각(angle of attack)의 변화를 주며 계산되는 유체력을 실험값과 비교하였고, 이를 바탕으로 대표적인 수직축 조류발전 터빈의 특성을 2차원적으로 고찰하였다. 사용된 수치해법은 대상 유동을 효과적으로 모사할 수 있음을 확인 하였고, 터빈의 최적 효율은 날개수 및 유속 대비 회전수 등의 적절한 조합으로 실현 될 수 있음을 파악하였다.
이 연구에서는 초음속 연소에서 발생하는 열폐색의 다양한 현상을 규명하기 위해 확대 축소 노즐 내부에서 열폐색에 의해 형성되는 2차원의 초음속의 비정상 유동장에 대한 수치해석 결과를 제시한다. 열폐색에 의해 야기되는 이동 충격파를 수치계산하기 위해 TVD 스킴을 이용하며, 노즐의 확대부의 일정영역에 가열을 통하여 열폐색이 발생할 수 있는 조건을 형성하고, 이 때 발생하는 천이현상을 분리부가 있는 경우와 없는 경우에 대해 불시동현상 발생속도, 비추력의 불안정성 등을 통해 비교, 설명한다. 분리부가 있는 경우가 없는 경우에 비해 열폐색에 의해 발생한 경사 충격파가 느린 속도로 상류측으로 이동하여 분리부의 설치가 엔진 불시동의 지연효과가 있음을 제시하였다.
In sliding bearings, viscous friction due to high shear acting on the bearing surface raises the oil temperature. One of the mechanisms responsible for generating the load-carrying capacity in parallel surfaces is known as the viscosity wedge effect. In this paper, we investigate the effect of film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of parallel slider bearings. For this purpose, the continuity equation, Navier-Stokes equation, and the energy equation with temperature-viscosity-density relations are numerically analyzed using the commercial computational fluid dynamics (CFD) code FLUENT. Two different film-temperature boundary conditions are adopted to investigate the pressure generation mechanism. The temperature and viscosity distributions in the film thickness and flow directions were obtained, and the factors related to the pressure generation in the equation of motion were examined in detail. It was confirmed that the temperature gradients in the film and flow directions contribute heavily to the thermal wedge effect, due to which parallel slider bearing can not only support a considerable load but also reduce the frictional force, and its effect is significantly changed with the film-temperature boundary conditions. The present results can be used as basic data for THD analysis of surface-textured sliding bearings; however, further studies on various film-temperature boundary conditions are required.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.