DOI QR코드

DOI QR Code

Performance Evaluation of Stator-Rotor Cascade System Considering Flow Viscosity and Aeroelastic Deformation Effects

유동점성 및 공탄성 변형효과를 고려한 스테이터-로터 케스케이드 시스템의 성능평가

  • 김동현 (경상대학교 기계항공공학부) ;
  • 김유성 (경상대학교 기계항공공학부 대학원)
  • Published : 2008.01.31

Abstract

In this study, advanced (fluid-structure interaction (FSI)) analysis system has been developed in order to predict turbine cascade performance with blade deformation effect due to aerodynamic loads. Intereference effects due to the relative movement of the rotor cascade with respect to the stator cascade are also considered. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation k-ω SST turbulence models are solved to accurately predict fluid dynamic loads considering flow separation effects. A fully implicit time marching scheme based on the (coupled Newmark time-integration method) with high artificial damping is efficiently used to compute the complex fluid-structure interaction problem. Predicted aerodynamic performance considering structural deformation effect of the blade shows somewhat different results compared to the case of rigid blade model. Cascade performance evaluations for different elastic axis positions are importantly presented and its aeroelastic effects are investigated.

본 연구에서는 블레이드 구조 변형 효과를 고려하여 스테이터-로터 상호간섭 케스케이드 모델의 성능평가를 위한 유체-구조 연계해석 시스템을 개발하였다. 고정된 스테이터와 회전하는 로터는 상호간섭 영향이 유동해석에 고려되었으며, 레이놀즈-평균화 난류 방정식인 Spalart-Allmaras 모델과 k-ω SST 난류 모델이 압축성 유동박리 효과를 고려한 유동하중을 예측하기 위해 적용되었다. 정적인 유체-구조 연계해석과 수렴율 증진을 효과적으로 수행하기 위하여 큰 인공 감쇠를 가지는 연계 Newmark 시간적분 기법을 적용하였다. 수치실험을 통해 탄성축 위치에 따른 구조변형 효과가 케스케이드 성능에 미치는 영향을 파악하였다. 구조변형 효과가 고려된 경우 일반적인 강체 블레이드 모델에 대한 성능예측 결과와 다소 차이가 유발될 수 있음을 보였으며 공력탄성학적 영향을 고찰하였다.

Keywords

References

  1. Blevins, R. D., Flow-Induced Vibration, 2nd ed, VanNostrand Reinhold., 1990
  2. Bennett, R. M. and Edward, J. W., "An Overview of Recent Developments in Computational Aeroelasticity", AIAA 98-2421, 1998
  3. Dowell, E. H., et al., A Modern Course in Aeroelasticity, Sijthoff & Noordhoff International Publishers, The Netherlands
  4. Doi, H., Alonso, J., "Fluid/Structure Coupled Aeroelastic Computations for Transonic Flows in Turbomachinery", Proceedings of ASME Turbo Expo., Amsterdam, The Netherands. 2002
  5. Cinnella, P., De Palma, P., Pascazio, C. and Napolitano, M., "A Numerical Method for Turbomachinery Aeroelasticity", ASME Journal of Turbomachinery, Vol. 126, pp.310-316. 2004 https://doi.org/10.1115/1.1738122
  6. Sanders, A. J., Hassan, K. K. and Rabe, D. C., 2004, "Experimental and Numerical Study of Stall Flutter in a Transonic Low-Aspect Ratio Fan, Blisk", ASME Journal of Turbomachinery, Vol. 126, 2004, pp. 166-174 https://doi.org/10.1115/1.1645532
  7. Kim, D. H., Oh, S. W., Kim, Y. S., and Kim, D. M., "Nonlinear Aeroelastic Simulation of Stator-Rotor Cascade Considering Relative Motions and Flow Viscosity Effects", International Forum on Aeroelasticity and Structural Dynamics (IFASD), The Royal Institute of Technology, Stockholm, Sweden, June 18-20, 2007
  8. Joseph W. Tedesco., Structural Dynamics Theory and Applications, Addison-Wesley. 1999
  9. Dring, R. P., Joslyn, H. D., Hardin, L. W. Wagner, J. H. "Turbine Rotor-Stator Interaction", Journal of Engineering for Power, Vol. 104, pp.729-742., 1982 https://doi.org/10.1115/1.3227339
  10. Rai, M. M., "Navier-Stokes Simulations of Rotor/Stator Interaction Using patched and Overlaid Grids", Journal al Population, Vol. 3, No. 5, pp. 387-396. 1987
  11. Mattingly, J. D., Elements of Gas Turbine Propulsion, McGRAW-HILL International Ed. 1996
  12. Fluent 6.2 User Guide Manual

Cited by

  1. Static Fluid-Structure Coupled Analysis of Low-Pressure Final-Stage Turbine Blade vol.34, pp.8, 2010, https://doi.org/10.3795/KSME-A.2010.34.8.1067
  2. Fluid/Structure Coupled Analysis of 3D Turbine Blade Considering Stator-rotor Interaction vol.19, pp.8, 2009, https://doi.org/10.5050/KSNVN.2009.19.8.764