• Title/Summary/Keyword: nature-based solution

Search Result 218, Processing Time 0.022 seconds

Evaluation on the suspended solids and heavy metals removal mechanisms in bioretention systems

  • Geronimo, Franz Kevin F.;Maniquiz-Redillas, Marla C.;Hong, Jungsun;Kim, Lee-Hyung
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • Application of bioretention systems in Korea is highly considered due to its minimal space requirements, appropriateness as small landscape areas and good pollutant removal and peak hydraulic flow reduction efficiency. In this study, the efficiency of two lab-scale bioretention types having different physical properties, media configuration and planted with different shrubs and perennials was investigated in reducing heavy metal pollutants in stormwater runoff. Type A bioretention systems were planted with shrubs whereas type B were planted with perennials. Chrysanthemum zawadskii var. latilobum (A-CL) and Aquilegia flabellata var. pumila (A-AP) respectively were planted in each type A bioretention reactors while Rhododendron indicum linnaeus (B-RL) and Spiraea japonica (B-SJ), respectively were planted in each type B bioretention reactors. Results revealed that the four lab-scale bioretention reactors significantly reduced the influent total suspended load by about 89 to 94% (p<0.01). Type B-RL and B-SJ reactors reduced soluble Cr, Cu, Zn, and Pb by 28 to 45% that were 15 to 35% greater than the soluble metal reduction of type A-CL and A-AP reactors, respectively. Among the pollutants, total Cr attained the greatest discharged fraction of 0.52-0.81. Excluding the effect of soil media, total Pb attained the greatest retention fraction in the bioretention systems amounting to 0.15-0.34. Considering the least discharge fraction of heavy metal in the bioretention system, it was observed that the bioretention systems achieved effectual reduction in terms of total Cu, Zn and Pb. These findings were associated with the poor adsorption capacity of the soil used in each bioretention system. The results of this study may be used for estimating the maintenance requirements of bioretention systems.

Electrocoagulation of Disperse Dyebath Wastewater: Optimization of Process Variables and Sludge Production

  • Aygun, Ahmet;Nas, Bilgehan;Sevimli, Mehmet Faik
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.82-91
    • /
    • 2021
  • This study was conducted to investigate the effect of initial pH, current density, and electrolysis time on process performance in terms of decolorization and chemical oxygen demand (COD) removal from disperse dyebath wastewater (DDW) by mono-polar parallel laboratory scale electrocoagulation (EC) process. COD reduction of 51.3% and decolorization of 92.8% were obtained with operating cost of 0.19 €/㎥ treated wastewater for Al-Al electrode pair, while 90.5% of decolorization and 49.2% of COD reduction were obtained with operating cost of 0.20 €/㎥ treated wastewater for an Fe-Fe electrode pair. The amount of sludge production were highly related to type of the electrode materials. At the optimum conditions, the amount of sludge produced were 0.18 kg/㎥ and 0.28 kg/㎥ for Al-Al and Fe-Fe electrode pairs, respectively. High decolorization can be explained by the hydrophobic nature of the disperse dye, while limited COD removal was observed due to the high dissolved organic matter of the DDW based on auxiliary chemicals. Energy, electrode, and chemical consumptions and sludge handling were considered as major cost items to find a cost-effective and sustainable solution for EC. The contribution of each cost items on operating cost were determined as 10.0%, 51.1%, 30.5% and 8.4% for Al-Al, and they were also determined as 9.0%, 38.0%, 40.5% and 12.5% for Fe-Fe, respectively. COD reduction and decolorization were fitted to first-order kinetic rule.

Adhesive Properties of Starch-Derived Maltose-Acryl Copolymer (전분 유래 엿당-아크릴 공중합체의 접착물성에 관한 연구)

  • Park, Sung Il;Lee, Myung Cheon
    • Journal of Adhesion and Interface
    • /
    • v.21 no.4
    • /
    • pp.135-142
    • /
    • 2020
  • Recently, people's interest in eco-friendly plastics derived from nature to replace petroleum-based plastics is increasing due to environmental problems such as microplastics. In line with this trend, eco-friendly adhesives using natural materials and processes are also being developed in the adhesive field. Among them, maltose is a natural substance derived from starch and is the main component of starch syrup used as a food additive. Due to its lower molecular weight than starch, it is easily soluble in water, and above all, there is a possibility that it can be copolymerized with other monomers through solution polymerization. However, researches related to the application of maltose to adhesives are very rare. In this study, after modifying maltose using acrylic anhydride, the product was analyzed through FT-IR and H-NMR. And the modified maltose was copolymerized with two kinds of acrylic monomers. The synthesized adhesive was applied on the wood and the adhesive performance were investigated.

Development of Distributed MRP System for Production Planning and Operation in Korean OEM/ODM Cosmetics Manufacturing Company (국내 OEM/ODM 화장품 제조기업의 생산계획 및 효율화를 위한 분산형 MRP시스템 개발)

  • Jang, Dongmin;Shin, Moonsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.133-141
    • /
    • 2020
  • Up to date cosmetic OEM/ODM (original equipment manufacturing/original development manufacturing) industry receives attention as a future growth engine due to steady growth. However, because of limited research and development capability, many companies have employed commercial management platforms specialized for large-sized companies; thus, overall system effectiveness and efficiency is low. Especially, MRP (material requirement planning) system introduced originally in 1970s is employed to calculate the requirement of the parts. However, dynamic nature of production lead time usually results in incorrect requirements. In addition, its algorithm does not consider the capability of the production resources. Also, because the commercial MRP system calculates all subcomponent for fixed period, the more goods have subcomponent, the slower calculation is. Therefore, conventional MRP system cannot respond complicated situation in time. In this study, we will suggest a new method that can respond to complicated situations resulting from short lead time and urgent production order in Korean cosmetic market. In particular, a distributed MRP system is proposed, that consists of multi-functional and operational modules, based on the characteristic of the BOM (bill of material). The distributed MRP system divides components (i.e. products and parts) into several fields and decrease the problem size; thus, we can respond to dynamically changed data any time. Through this solution, we can order components quickly, adjust schedules and planned quantity, and manage stocks reasonably. In addition, a prototype of the distributed MRP system is presented in this paper, in which ERP (enterprise resource planning) sever data is associated with an excel spreadsheet via MSsql. System user interface is implemented by a VBA (visual basic for applications) tool. According to a case study, response rate for delivery and planning achievement rate were enhanced about 20%, and inventory turnover was also decreased. Consequently, the proposed system improves overall profit.

Liquid Metal Enabled Thermo-Responsive Poly(N-isopropylacrylamide)Hydrogel for Reversible Electrical Switch (액체금속이 첨가된 온도 감응성 poly(N-isopropylacrylamide) 하이드로젤의 전기적 특성 변화 고찰)

  • Lim, Taehwan;Lee, Sohee;Yeo, Sang Young
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.207-216
    • /
    • 2022
  • Hydrogels have gained considerable attention in various fields due to their easily transformative ability by different stimulation. In addition, metal-based conductive additives can enable the hydrogels to be conductive with dimension change. Although the development of the additives offered enhanced electrical properties to the hydrogels, correspondingly enhanced mechanical properties may limit the volume and electrical properties switching after stimulation. Here we prepared poly(N-isopropylacrylamide) (PNIPAM) thermo-responsive hydrogel that has a 32℃ of low critical solution temperature and added liquid metal particles (LMPs) as conductive additives, possessing soft and stretchable benefits. The LMPs enabled PNIPAM (PNIPAM/LMPs) hydrogels to be constricted over 32℃ with a high volume switching ratio of 15.2 when deswelled. Once the LMPs are spontaneously oxidized in hydrogel culture, the LMPs can release gallium ions into the hydrogel nature. The released gallium ions and oxidized LMPs enhanced the modulus of the PNIPAM/LMPs hydrogel, triggering high mechanical stability during repeated swelling/deswelling behavior. Lastly, highly constricted PNIPAM/LMPs hydrogel provided a 5x106 of electrical switching after deswelling, and the switching ratio was closely maintained after repeated swelling/deswelling transformation. This study opens up opportunities for hydrogel use requiring thermo-responsive and high electrical switching fields.

Reactivity of aluminosilicate materials and synthesis of geopolymer mortar under ambient and hot curing condition

  • Zafar, Idrees;Tahir, Muhammad Akram;Hameed, Rizwan;Rashid, Khuram;Ju, Minkwan
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.71-81
    • /
    • 2022
  • Aluminosilicate materials as precursors are heterogenous in nature, consisting of inert and partially reactive portion, and have varying proportions depending upon source materials. It is essential to assess the reactivity of precursor prior to synthesize geopolymers. Moreover, reactivity may act as decisive factor for setting molar concentration of NaOH, curing temperature and setting proportion of different precursors. In this experimental work, the reactivities of two precursors, low calcium (fly ash (FA)) and high calcium (ground granulated blast furnace slag (GGBS)), were assessed through the dissolution of aluminosilicate at (i) three molar concentrations (8, 12, and 16 M) of NaOH solution, (ii) 6 to 24 h dissolution time, and (iii) 20-100℃. Based on paratermeters influencing the reactivity, different proportions of ternary binders (two precursors and ordinary cement) were activated by the combined NaOH and Na2SiO3 solutions with two alkaline activators to precursor ratios, to synthesize the geopolymer. Reactivity results revealed that GGBS was 20-30% more reactive than FA at 20℃, at all three molar concentrations, but its reactivity decreased by 32-46% with increasing temperature due to the high calcium content. Setting time of geopolymer paste was reduced by adding GGBS due to its fast reactivity. Both GGBS and cement promoted the formation of all types of gels (i.e., C-S-H, C-A-S-H, and N-A-S-H). As a result, it was found that a specified mixing proportion could be used to improve the compressive strength over 30 MPa at both the ambient and hot curing conditions.

Station Extension Algorithm Considering Destinations to Solve Illegal Parking of E-Scooters

  • Jeongeun, Song;Yoon-Ah, Song;ZoonKy, Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.131-142
    • /
    • 2023
  • In this paper, we propose a new station selection algorithm to solve the illegal parking problem of shared electric scooters and improve the service quality. Recently, as a solution to the urban transportation problem, shared electric scooters are attracting attention as the first and last mile means between public transportation and final destinations. As a result, the shared electric scooter market grew rapidly, problems caused by electric scooters are becoming serious. Therefore, in this study, text data are collected to understand the nature of the problem, and the problems related to shared scooters are viewed from the perspective of pedestrians and users in 'LDA Topic Modeling', and a station extension algorithm is based on this. Some parking lots have already been installed, but the existing parking lot location is different from the actual area of tow. Therefore, in this study, we propose an algorithm that can install stations at high actual tow density using mixed clustering technology using K-means after primary clustering by DBSCAN, reflecting the 'current state of electric scooter tow in Seoul'.

A Study on Evaluation Method for Structural Suitability of Constructed Wetlands in Dam Reservoirs as an Ecological Water Purification System (생태적 수질정화시설로서 댐 저수지 인공습지의 구조 적정성 평가방안)

  • Bahn, Gwon-Soo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.23-40
    • /
    • 2022
  • Many constructed wetlands have been installed in dam reservoirs nationwide for ecological purification of watershed pollutants, but aging and reduced efficiency are becoming issues. To improve the management of constructed wetlands, an objective evaluation of structural suitability is required. This study evaluated 39 constructed wetlands of 15 dams. First, through fogus group interview(FGI), survey analysis, and analytic hierarchy process(AHP), eight evaluation items in the physical and vegetative aspects were selected and the evaluation criteria applied with weights were prepared. Second, as a result of the structural suitability evaluation, the average score of the overall constructed wetlands was 80.8, with 10 sites rated as 'good grade(91~100)', 22 sites rated as 'normal grade(71~90)' and 7 sites rated as 'poor grade(70 or less)'. The average score of physical structure evaluation was 52.6, with 14 sites rated as 'good', 21 sites as 'normal' and 4 sites as 'poor'. The suitability of location was good level in most constructed wetlands, but the water supply system, depth of water, ratio of length-to-width, and slope of flow channel were evaluated as 'normal' or less in constructed wetlands of 50% or more. Therefore, it was found that overall improvement was necessary for stable flow supply and flow improvement in the constructed wetland. The average score of vegetative structure evaluation was 28.2, and about 84% of them were identified as 'normal' or lower. As a result of analyzing the Spearman's correlation coefficient between the physical structure evaluation score and the vegetation structure evaluation score, there was a significant correlation(r = 0.728, p < 0.001), and it was found that each evaluation factor also influences each other. As a result of the case review of 6 constructed wetlands, the appropriateness of the evaluation results was confirmed, and it was found that the location, flow rate supply, and type of wetland had a great influence on the efficiency and operation of the wetland. Through this study, it will be possible to derive structural weaknesses of constructed wetlands in dam reservoirs as a nature-based solution, to prepare types and practical alternatives for improved management of each constructed wetland in the future, and to contribute to enhancing various environmental functions.

IBN-based: AI-driven Multi-Domain e2e Network Orchestration Approach (IBN 기반: AI 기반 멀티 도메인 네트워크 슬라이싱 접근법)

  • Khan, Talha Ahmed;Muhammad, Afaq;Abbas, Khizar;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.29-41
    • /
    • 2020
  • Networks are growing faster than ever before causing a multi-domain complexity. The diversity, variety and dynamic nature of network traffic and services require enhanced orchestration and management approaches. While many standard orchestrators and network operators are resulting in an increase of complexity for handling E2E slice orchestration. Besides, there are multiple domains involved in E2E slice orchestration including access, edge, transport and core network each having their specific challenges. Hence, handling of multi-domain, multi-platform and multi-operator based networking environments manually requires specified experts and using this approach it is impossible to handle the dynamic changes in the network at runtime. Also, the manual approaches towards handling such complexity is always error-prone and tedious. Hence, this work proposes an automated and abstracted solution for handling E2E slice orchestration using an intent-based approach. It abstracts the domains from the operators and enable them to provide their orchestration intention in the form of high-level intents. Besides, it actively monitors the orchestrated resources and based on current monitoring stats using the machine learning it predicts future utilization of resources for updating the system states. Resulting in a closed-loop automated E2E network orchestration and management system.

Effect of Ethanol Fractionation of Lignin on the Physicochemical Properties of Lignin-Based Polyurethane Film

  • Sungwook WON;Junsik BANG;Sang-Woo PARK;Jungkyu KIM;Minjung JUNG;Seungoh JUNG;Heecheol YUN;Hwanmyeong YEO;In-Gyu CHOI;Hyo Won KWAK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.221-233
    • /
    • 2024
  • Lignin, a prominent constituent of woody biomass, is abundant in nature, cost-effective, and contains various functional groups, including hydroxyl groups. Owing to these characteristics, they have the potential to replace petroleum-based polyols in the polyurethane industry, offering a solution to environmental problems linked to resource depletion and CO2 emissions. However, the structural complexity and low reactivity of lignin present challenges for its direct application in polyurethane materials. In this study, Kraft lignin (KL), a representative technical lignin, was fractionated with ethanol, an eco-friendly solvent, and mixed with conventional polyols in varying proportions to produce polyurethane films. The results of ethanol fractionation showed that the polydispersity of ethanol-soluble lignin (ESL) decreased from 3.71 to 2.72 and the hydroxyl content of ESL increased from 4.20 mmol/g to 5.49 mmol/g. Consequently, the polyurethane prepared by adding ESL was superior to the KL-based film, exhibiting improved miscibility with petrochemical-based polyols and reactivity with isocyanate groups. Consequently, the films using ESL as the polyol exhibited reduced shrinkage and a more uniform structure. Optical microscope and scanning electron microscope observations confirmed that lignin aggregation was lower in polyurethane with ESL than in that with KL. When the hydrophobicity of the samples was measured using the water contact angle, the addition of ESL resulted in higher hydrophobicity. In addition, as the amount of ESL added increased, an increase of 7.4% in the residual char was observed, and a 4.04% increase in Tmax the thermal stability of the produced polyurethane was effectively improved.