• Title/Summary/Keyword: natural yeast

Search Result 443, Processing Time 0.022 seconds

Characteristics of Heavy Metal Resistant Plasmid in Enterobacter cloaceae K41 (Enterobacter cloaceae K41 plasmid의 중금속 저항성)

  • Kim Young-Hee;Lee Sang-Jun;Jeong Yong-Kee;Chung Kyung-Tae
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.566-571
    • /
    • 2005
  • A natural habitat bacterium, Enterobacter cloaceae K41 was isolated from fresh water plant root and identified. This strain was used to investigate heavy metal resistance. The optimal growth conditions of the bacterium were LB medium containing$1\%$ yeast extract, $1\%$ lactose, $1\%$ NaCl, pH 7.0, at $37^{\circ}C$, and for 24 hours on a shaker. The minimal inhibitory concentration (MIC) of heavy metals against E. cloaceae KCTC2519 and E. cloaceae K41 was compared. The MIC of E. cloaceae K41 was 150 ppm in Cu, 50 ppm in Cd whereas that of the standard strain was 50 ppm in Cu but no growth was observed either Cd or two mixed heavy metal solution. The presence of plasmid was cleared from the isolated strain whereas no possession from the standard strain. The plasmid from E. cloaceae K41 was transformed into E. coli $DH5{\alpha}$. The MIC of transformed strain increased resistance 7 times in Cu and 6 times in Cd by insertion of this plasmid. The metal adsorption of the transformant was increased 1.3 times in Cu and 1.5 times in Cd indicating the plasmid was responsible for heavy metal resistance.

Inhibition of Melanoma Differentiation by Melanogenesis Inhibitor Isolated from Yeast (효모에서 분리한 멜라닌 생성 억제 물질의 세포분화 억제)

  • Choe Taeboo;Lee Seungsun;Jung Hokwon;Chul Oh
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.25-33
    • /
    • 2005
  • Melanocytes synthesize melanin within discrete organelle termed melanosomes which are transferred to the surrounding keratinocytes and can be produced in varying sizes, numbers and densities. Skin whitening products have become increasingly popular in the past few years. The most successful natural skin whitening agents are: arbutin, vitamin C, kojic acid, and mulberry, which are all tyrosinase inhibitors. In this work, melanoston, a melanogenesis inhibitor isolated from yeast was studied to understand its mechanism of melanogenesis inhibition. It was found that melanoston was not a tyrosinase inhibitor, while when melanoston was applied to the B16 melanoma cell culture media, the intracellular tyrosinase activity was decreased by more than $30\%$. When B16 melanoma was stimulated with $\alpha$-MSH, cell morphololgy was dramatically changed to have lots of dendrites on the cell membrane surface. On the other hand, B16 was treated with $\alpha$-MSH and melanoston, simultaneously, the change of cell morphologv was not so great. This inhibitory effect of melanoston was found to be related to the inhibition of intracellar activation and transportation of tyrosinase, which was observed by irmmunostaining of B16 melanoma using anti-tyrosinase antibody. From these results, melanoston was regarded as an inhibitor to the differentiation of melanoma cells.

Detection of microbial organisms on Apis mellifera L. beehives in palm garden, Eastern Thailand

  • Sirikwan Dokuta;Sumed Yadoung;Peerapong Jeeno;Sayamon Hongjaisee;Phadungkiat Khamnoi;Khanchai Danmek;Jakkrawut Maitip;Bajaree Chuttong;Surat Hongsibsong
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Background: Honey bees play a crucial role in pollination and ecological balance. Apis mellifera L. colonies, especially those located in specific geographic regions, such as the palm garden in Eastern Thailand, are susceptible to potential threats from microbial contaminants. Understanding and detecting microbial organisms in these beehives is essential for the preservation of bee health, honey production, and the broader ecosystem. However, the problem of microbial infection and antibiotic-resistant bacteria is more severe and continuously increasing, resulting in a health, economic, and social crisis. The purpose of this study is to determine the prevalence of microorganisms in A. mellifera beehives in palm gardens in Rayong province, Eastern Thailand. Results: Ten swabs in transport media were swabbed and obtained from different parts of each beehive (1 swab per beehive), for a total of 10 hives. Traditional microbial culture-based methods, biochemical tests, and antimicrobial susceptibility (disc-diffusion) tests were used to detect microbial organisms and antibiotic resistance in bacteria. The swab tests from nine beehives resulted in the detection of Gram-positive bacteria (63.64%), Gram-negative bacteria (27.27%), and fungi/yeast (9.09%). These microorganisms are classified as a group of coagulase-negative Staphylococcus spp. and made up 40.91% of the bacteria discovered. Other bacteria found were Coryneform bacteria (13.64%), Pantoea spp. (13.64%), Bacillus spp. (9.09%), yeast (9.09%), glucose non-fermentative Gram-negative bacilli (9.09%), and Pseudomonas spp. (4.55%). However, due to the traditional culture-based and 0biochemical tests usually used to identify the microbial organisms in clinical specimens and the limitation of identifying some environmental microbial species, the results of the antimicrobial susceptibility test cannot reveal if the organism is resistant or susceptible to the drug. Nevertheless, drug-sensitive inhibition zones were formed with each antibiotic agent. Conclusions: Overall, the study supports prevention, healthcare, and public health systems. The contamination of microorganisms in the beehives may affect the quality of honey and other bee products or even the health of the beekeeper. To avoid this kind of contamination, it is therefore necessary to wear personal protective equipment while harvesting honey and other bee products.

Microbiological and Physicochemical Quality Characteristics of Raw Noodle with Natural Food Preservatives (복합항균제제를 첨가한 생면의 미생물학적 및 이화학적 품질 특성)

  • Hyun, Jeong-Eun;Hwang, Jin-Ha;Choi, Yun-Sun;Han, Areum;Yoon, Jae-Hyun;Bae, Young-Min;Lee, Ho;Kim, Chul;Lee, Myunggu;Shim, Myeungkuk;Im, Kyung-Hyun;Lee, Sun-Young
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.26 no.5
    • /
    • pp.435-444
    • /
    • 2016
  • This study was conducted to investigate the effects of natural preservatives (G3, G3-1, F3, and F3-1) using Cordyceps militaris on improvement of food quality and safety of noodle during storage. Wheat flour noodle were prepared using three different concentrations of natural preservatives (0.100, 0.200, and 0.400%). Changes in microbial populations, pH value, titratable acidity, and sensory evaluation were measured during storage at $12{\pm}2^{\circ}C$ for 3 days. Overall, use of natural preservatives resulted in lower levels of total mesophilic bacteria, coliform, yeast and mold in noodle compared to the control. In particular, natural preservatives using $2{\times}$ MIC concentrations (0.400%) of F3 and F3-1 were effective at maintaining levels of total mesophilic bacteria for noodle during storage. The pH values of noodle made with F3 and F3-1 were higher than the others. The titratable acidity of noodle with natural preservatives did not significantly change during storage. In sensory evaluation, appearance, color, and overall acceptability of noodle with F3 and F3-1 were preferred than the control. These results could provide useful information for developing an alternative preservation method to improve food quality and shelf-life of noodle using natural preservatives.

Evaluation of Microbially Ensiled Spent Mushroom (Pleurotus osteratus) Substrates (Bed-Type Cultivation) as a Roughage for Ruminants (균상재배 느타리버섯부산물 생균발효사료의 반추동물 조사료원으로서의 가치 평가)

  • Kim, Young-Il;Seok, Jun-Sang;Kwak, Wan-Sup
    • Journal of Animal Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.117-124
    • /
    • 2010
  • An in situ ruminal disappearance trial and an in vivo sheep metabolism trial were conducted to evaluate the nutritional value of spent mushroom substrate (SMS, originated from Pleurotus osteratus bed-type cultivation). The raw SMS was ensiled (ESMS) for 30 days with 5% (w/w, DM basis) molasses, 0.5% (v/w) yeast (Saccharomyces cerevisiae) and 0.5% (v/w) lactic acid bacteria (Lactobacillus plantarum). Two ruminally cannulated Holsteins (average BW 620 kg) were used to evaluate in situ disappearance. Six sheeps (average BW 48 kg) were fed, in $3{\times}3$ Latin square design, rice straw alone (Control), 25% (ESMS-25) and 50% (ESMS-50) of rice straw were replaced with ensiled SMS. For an in situ trial, ruminal DM and neutral detergent fiber (NDF) disappearance of SMS were increased after ensiling (P<0.05). For a sheep trial, protein and fiber (NDF, acid detergent fiber, crude fiber) digestibilities were decreased (P<0.05), crude ash digestibility was increased (P<0.001), and nitrogen retention was not affected (P>0.05) as rice straw was replaced with ensiled SMS. Ruminating time was decreased by an average of 28% by feeding ensiled SMS (P<0.05). Ensiled SMS (Bed-type cultivation) had 76% of energy value of rice straw. Consequently, ensiled SMS (Bed-type cultivation, 100% cotton waste) could be used as a roughage source appropriate for maintenance type rations for ruminants.

Isolation and Characterization of Microorganisms with Broad Antifungal Activity against Phytopathogenic Fungi (식물병원균에 광범위 항균활성을 가진 미생물의 분리 및 특성)

  • Kim, Min-Hee;Ko, Hee-Sun;Yook, Young-Min;Kim, Hyun-Soo
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • For the production of an antifungal compound, one strain (I-8) was selected from approximately 400 strains isolated from various soil samples. The optimum carbon source, nitrogen source and pH culture conditions for the production of the antifungal compound were investigated. ISP No. 2 medium (yeast extract 0.4%, malt extract 1% and dextrose 0.4%, at pH 8) was determined to be the optimum medium. Strain I-8 showed broad antifungal activity against the plant pathogenic fungi tested, including Sclerotinia sclerotiorum KACC 41065, as well as cellulase and chitinase activities in an agar plate assay. The extraction of antifungal compounds was performed using ethyl ether and ethyl acetate. In a culture broth of strain I-8, the ethyl acetate extract exhibited effective growth inhibition against 14 of the 20 phytopathogenic fungi tested. By mixing the ethyl acetate extract from I-8 with the ethyl ether extract from the fungus 13-16, which shows specific antifungal activity against Colletotrichum orbiculare KACC 40808, the antifungal activity of I-8 against phytopathogenic fungi was confirmed to be slightly increased. Strain I-8 showed strong growth inhibition against 16 phytopathogenic strains in agar plate tests.

A Specific Role of Ime2, Meiosis-specific Protein Kinase, in the Eary Meiotic Pathway in Saccharomyces cerevisiae (Saccharomyces cerevisiae의 감수분열 특이적 Protein Kinase인 Ime2의 역할)

  • Leem, Sun-Hee;Tak, Yon-Soo;Sunwoo, Yang-Il
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.258-265
    • /
    • 1999
  • Entry into meiosis in the yeast Saccharomyces cerevisiae is regulated by two major factors: the cell type MATa/MAT${\alpha}$ and the nutriational state (starvation) of the cell. The two independent regulations act through IME1and IME2 expression to initiate meiosis. IME2 encodes a meiosis-specific protein kinase, and it enabled MATa/MAT${\alpha}$ diploid cells to undergo meiosis and sporulation. The PCR mutagenesis method was applied for the isolation of thermosensitive ime2 mutants. Among sixty two mutants isolated from the phenotype of defective spore formation under the restrictive temperature, three with the most easily observed temperature-sensitive phenotype (ts ${\cdot}$ime2-11, ts ${\cdot}$ime2-12 and ts ${\cdot}$ime2-13) were selected for further study. To understand the detailed functions of IME2, we examined the defects of these mutants in the early meiotic pathway including the premeiotic DNA replication and exhibited decreased level in meiotic recombination. These results suggest that the IME2 gene plays essential role in meiotic recombination pathway as well as premeiotic DNA replication. As the result of the IME2 overexpression in ${\Delta}$mre4. moreover, it was suggested that the IME2 and MRE4 genes act on the same pathway of initiation step in meiotic recombination.

  • PDF

Production and Characterization of Thermo-alkalotolerant Cyclodextrin Glucanotransferase from Thermo-alkalophilic Bacillus cereus B-13 (고온성이며 호알칼리성인 Bacillus cereus B-13으로부터 내열성, 호알카리성 Cyclodextrin Glucanotransferase의 생산과 특성)

  • Seo, Seung-Bo;Kim, Jae-Ho;Lee, Dae-Hyong;Lee, Jong-Soo
    • The Journal of Natural Sciences
    • /
    • v.16 no.1
    • /
    • pp.15-29
    • /
    • 2005
  • To produce a thermostable cyclodextrin by using thermotolerant cyclomaltodextrin glucanotransferase(CGTase), a thermophilic and alkalophilic bacterium isolate, designated B-13 showing the highest CGTase activity was isalated from natural sources and identified as Bacillus cereus B-13 based on the morphological and physiological characteristics, and 16S rRNA sequence. The maximal CGTase activity (130 U/ml) was obtained when Bacillus cereus B-13 was cultured in SYC medium containing 2.0% soluble starch, 1.0% yeast extracts, 1% corn steep liquor and 1% $Na_2CO_3$ (pH 8.5) at $50^{\circ}C$ for 24 h and about 80% of maximal activity was also showed in he culture broth of $60^{\circ}C$ for 18 h. Optimum reaction temperature and pH of the partial purified CGTase for soluble starch were $65^{\circ}C$ and pH 8.5-9.0 respectively. The partial purified CGTase were also stable below $80^{\circ}C$ and pH 5.0-10.0. When 1% soluble starch was digested with the partial purified CGTase, the yield of cyclodextrin was 49%.

  • PDF

Improvement of Takju Quality by a Ripening-Fermentation Process Using Honey and Extension of Shelf Life by Control of Takju Mash Sediment (벌꿀을 이용한 고액분리 숙성 탁주의 주질 향상과 고형분의 조절에 따른 품질유지기간 증대)

  • Jung, Seung-Jin;Shin, Tai-Sun;Kim, Jin-Man
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.80-86
    • /
    • 2012
  • This study was conducted to improve quality of takju where natural honey is used to control the ripening fermentation and the amount of sediment derived from takju mash. A koji was prepared using rice starch and Aspergillus awamori var. kawachii. Takju mash was prepared by alcohol fermentation with Saccharomyces cerevisiae and a 3-step addition of steamed rice. The clean part of the mash (CPM) was separated from the sediment at $5^{\circ}C$ and 5% (w/v) of natural honey was added and then ripened for 23 days at 5, 10, or $15^{\circ}C$. Temperature, pH, acidity, and total sugar content showed no significant differences, but a 0.2 percent reduction in alcohol content occurred during storage. However, CPM ripened with honey had a comparatively higher score on sensory evaluation than did immature CPM with added honey added. Takju with 8% alcohol content was prepared by mixing the water from the mixed CPM ripened with honey together with 100, 50, and 25% of the frozen sediment. Several quality characteristics of the takju were checked over 37 days of fermentation at $10^{\circ}C$. The pH was sustained between 4.1 and 4.3, and changes in the number of viable yeast cells, acidity, total sugar amounts, and alcohol content showed similar patterns but differences in scale. Smaller amounts of sediment affected the stability of the takju. Mixing the CPM ripened with natural honey at low temperature moderately reduced the amount of sediment in the mash and resulted in a highly flavorful takju with an extended shelf life.

Isolation and Characterization of the Mutants in the Genes Involved in Mating Pheromone Signalling (효모의 mating pheromone 신호전달과정에 관여하는 유전자의 돌연변이 분리 및 분석)

  • Kim, Ji-Hye;Kim, Hwan-Gyu;Jahng, Kwang-Yeop
    • The Korean Journal of Mycology
    • /
    • v.19 no.4
    • /
    • pp.266-275
    • /
    • 1991
  • The gene CDC70 encoding the${\alpha}-subunit$ of G protein has been known to be a component involved in mating pheromone signalling in the yeast, Saccharomyces cerevisiae. To isolate mutations of the genes involved in the signal transduction, Saccharomyces cerevisiae the strain bearing the cdc70-5 mutation was mutagenized to be forced to recover the ability of colony-formation at restrictive temperature, which means the new mutation can suppress the temperature sensitivity of the cdc70-5 phenotypes. Among these suppressors, $sir^-$ and $mat{\alpha}2^{-}$ mutations are excluded because of no relationship to signal transducer. And the selected suppressors were analyzed for the linkage relationships by the tetrad analysis. Out of fifteen suppressors isolated, twelve were classified into four linkage groups, designated as sga1, sga2, sga3, sga4 by the tetrad analysis. The other three genes were determined for the linkage.

  • PDF