• 제목/요약/키워드: natural vibration

검색결과 3,248건 처리시간 0.03초

다단 회전축 고유진동 특성 (Natural Vibration Characteristics of Multi-step Rotating Shaft)

  • 전오성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.114-119
    • /
    • 1997
  • Natural vibration of the rotor system having multi-step cross-sections is analyzed. The rotary inertia and the shear deformation are considered. Torque is also included in order to simulate the power transmission system. The complex displacement and the variable separation are introduced. The exact solutions in uniform cross-section segment and the boundary conditions are used. Natural frequencies and mode shapes are obtained, especially the mode shapes are countinuous.

  • PDF

다양한 수평 수직 단면적비를 가지는 LCVA의 진동특성 평가 (Vibration Characteristics of Liquid Column Vibration Absorber with Various Area Ratio)

  • 정란;이정우;박현진;이상현;우성식;조승호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.121-125
    • /
    • 2007
  • LCVA has an advantage that its natural frequency can be easily controlled by changing the area ratio of the vertical column and horizontal part. The previous studies investigated the dynamic characteristics of the LCVA under harmonic load. This study experimentally obtained the first and second mode natural frequencies of the LCVA from shaking table tests using white noise and compared the values with the ones by previous study. Test results show that the measured first mode natural frequency of the LCVA is larger than the calculated one when the area ratio is larger than 1. The second mode frequency increases with the increasing area ratio, which is due to the sloshing motion effect resulting from the large area of the vertical column.

  • PDF

부품의 국부적 유연성이 차량의 동적 거동에 미치는 영향 (Flexibility Effects of Components on the Dynamic Behavior of Vehicle)

  • 이상범;임홍재
    • 한국공작기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.57-62
    • /
    • 2003
  • A fundamental structural design consideration for a vehicle system is the overall vibration characteristics in bending and torsion. Vibration characteristics of such vehicle system are mainly influenced by the static and dynamic stiffness of the vehicle body structure and also by the material and physical properties of the components attached to the vehicle body structure. In this paper, modeling techniques for the vehicle components are presented and the flexibility and mass effects of the components for the vibration characteristics of the vehicle are investigated. The $1^{st}$ torsional frequency is increased by attaching windshields to the B.I.W. (body-in-white), but the $1^{st}$ bending frequency is decreased by the mass effect. And also, the natural frequencies of the vehicle are large decreased by attaching bumpers, seats, doors, trunk-lid etc. But, suspension system rarely affects the natural frequencies of the vehicle. The study shows thai the dynamic characteristics of the vehicle system can be effectively predicted in the initial design stage.

The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams

  • Lim, C.W.;Li, C.;Yu, J.L.
    • Interaction and multiscale mechanics
    • /
    • 제2권3호
    • /
    • pp.223-233
    • /
    • 2009
  • This paper presents a new nonlocal stress variational principle approach for the transverse free vibration of an Euler-Bernoulli cantilever nanobeam with an initial axial tension at its free end. The effects of a nanoscale at molecular level unavailable in classical mechanics are investigated and discussed. A sixth-order partial differential governing equation for transverse free vibration is derived via variational principle with nonlocal elastic stress field theory. Analytical solutions for natural frequencies and transverse vibration modes are determined by applying a numerical analysis. Examples conclude that nonlocal stress effect tends to significantly increase stiffness and natural frequencies of a nanobeam. The relationship between natural frequency and nanoscale is also presented and its significance on stiffness enhancement with respect to the classical elasticity theory is discussed in detail. The effect of an initial axial tension, which also tends to enhance the nanobeam stiffness, is also concluded. The model and approach show potential extension to studies in carbon nanotube and the new result is useful for future comparison.

비접촉 원자간력 현미경의 탐침 캔틸레버 진동 특성 및 측정 성능 평가 (Vibration Characteristics and Performance of Cantilever for Non-contact Atomic Force Microscopy)

  • 박준기;권현규;홍성욱
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.495-502
    • /
    • 2004
  • This paper presents the vibration analysis and the performance evaluation of cantilevers with probing tips for non-contact scanning probe microscopy. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made for the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

전달행렬법을 이용하여 폭이 테이퍼진 회전하는 외팔보의 정확한 굽힘 진동해석 (Exact Solution for Bending Vibration of Rotating Cantilever Beam with Tapered Width Using Transfer Matrix Method)

  • 이정우;곽종훈;이정윤
    • 한국소음진동공학회논문집
    • /
    • 제26권1호
    • /
    • pp.75-81
    • /
    • 2016
  • In this study, a transfer matrix method in which can produce an infinite number of accurate natural frequencies using a single element for the bending vibration of rotating Bernoulli-Euler beam with linearly reduced width, is developed. The roots of the differential equation in the proposed method are calculated using the Frobenius method in the power series solution. To demonstrate the accuracy of the method, the calculated natural frequencies are compared with the results given by using the commercial finite element analysis program(ANSYS), and the comparison results between these two methods show the excellent agreement. Based on the comparison results, a parametric study is performed to investigate the effect of the centrifugal forces on the non-dimensional natural frequencies for rotating beam with the variable width.

쉘타입 로울러 게이트의 회피개도량 산정 방법 (A Method on Estimation of Avoiding Open Range on Shell-type Roller Gate)

  • 정지승;정해욱
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.85-91
    • /
    • 2017
  • When the shell-type roller gate is partly open, at a certain height the large vibration is caused due to resonance and the vibration can cause damage to the gate. In this study, the review on amplitude of vibration and the possible resonance occurring at the time of opening or closing of gate is performed. Throughout the natural frequency analysis, the installation location of the measuring instrument was selected. On opening or closing of gate, the measurement of gate vibration is performed. The natural frequencies according to the opening range of the gate is analyzed. As a result of measurement and analysis, we proposed ranges in which vibration occurs largely and resonance is predicted as an avoiding open ranges, or the safe opening or closing of the shell-type roller gate. The application of this paper's avoiding open range estimation method of shell-type roller gate can be utilized as the basic data for the systematic and rational maintenance management of dams and submerged weirs in the future, and it is expected that this study can bring forth.

선박용 추진축계 비틀림진동 실험장치의 소개 (Experimental Equipment for Torsional Vibration of Marine Propulsion Shafting)

  • 김상환;김지근;이돈출;박성현
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.149-153
    • /
    • 2005
  • Marine Propulsion shafting system coupled with medium diesel engine forms multi-degree torsional vibration system which consist of many inertia masses such as crank, flywheel, propeller and sometimes gear system is adopted additionally for the purpose of improving propeller's propulsion efficiency or connecting with PTO/PTI. The periodic excitation torques generated by combustion pressure in cylinder and reciprocating masses induce various kinds of vibrations in this shafting system. If the frequency of this excitation torques is equal to the natural frequency of the shafting, the amplitude of the torsional vibration increases steeply and the damage of crankshaft or gears may be occurred by that. This frequency is called critical speed. When making a plan for shafting system, it is important for this frequency to be expected exactly and not to be in commonly used speed. For this reason, this paper introduces the experimental equipment for torsional vibration of marine propulsion shafting system and describes the theoretic and the experimental methods to look for natural frequencies.

  • PDF

비접촉 원자간력 현미경의 탐침 외팔보 진동특성에 따른 성능 평가 (Performance Evaluation of Non-contact Atomic Force Microscopy Due to Vibration Characteristics of Cantilever)

  • 박준기;권현규;홍성욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.263-268
    • /
    • 2003
  • This paper presents a result of performance evaluation fur non-contact scanning probe microscopy with respect to the vibration characteristics of cantilevers with tips. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made fur the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

  • PDF

Vibration modelling and structural modification of combine harvester thresher using operational modal analysis and finite element method

  • Zare, Hamed Ghafarzadeh;Maleki, Ali;Rahaghi, Mohsen Irani;Lashgari, Majid
    • Structural Monitoring and Maintenance
    • /
    • 제6권1호
    • /
    • pp.33-46
    • /
    • 2019
  • In present study, Operational Modal Analysis (OMA) was employed to carry out the dynamic and vibration analysis of the threshing unit of the combine harvester thresher as a mechanical component. The main study is to find the causes of vibration and to decrease it to enhance the lifetime and efficiency of the threshing unit. By utilizing OMA, structural modal parameters such as mode shapes, natural frequencies, and damping ratio was calculated. The combine harvester was excited by engine to vibrate different parts and accelerometer sensor collected acceleration signals at different speeds, and OMA was utilized by nonparametric and frequency analysis methods to obtain modal parameters while vibrating in real working conditions. Afterwards, finite element model was designed from the thresher and updated using the data obtained from the modal analysis. Using the conducted analyses, it was specified that proximity of the thresher pass frequency to one of the natural frequencies (16.64 Hz) was the most important effect of vibration in the thresher. Modification process of the structure was carried out by increasing mass required for changing the natural frequency location of the first mode to 12.4 Hz in order to reduce resonance and vibration of the thresher.