• Title/Summary/Keyword: natural ventilating

Search Result 17, Processing Time 0.023 seconds

A Prediction of Hybrid Ventilation System Performance in Apartment House (공동주택 하이브리드(Hybrid) 환기시스템의 성능예측)

  • Hwang, Ji-Hyeon;Oh, Chang-Yong;Choi, Hung-Won;Kim, Moo-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.33-38
    • /
    • 2005
  • A hybrid ventilation system was introduced to predict the ventilation performance of the apartments. This ventilation system was composed of the natural supply-air inlet and the forced exhaust-air outlet. Analysis was conducted by CFD technique and was performed on three ventilating flow rates; 30, 60, 120 $m^3/h$. As the results, residents feel comfortable thermally and in air flow conditions for 60 $m^3/h$. But the case of 30 $m^3/h$ shows 1100ppm of $CO_2$ concentration due to the deficient of air flow rate. In the case of 120 $m^3/h$, however, residents feel uncomfortable thermally and in air currents. In this study the energy saving for space heating is also an important factor. A detailed prediction for more complicated whole apartment space will be investigated in the future.

  • PDF

A Prediction of Hybrid Ventilation System Performance in Apartment House (제3종 하이브리드 환기시스템을 적용한 공동주택의 환기성능 예측)

  • Hwang Ji-Hyeon;Oh Chang-Yong;Kim Moo-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.541-548
    • /
    • 2006
  • A hybrid ventilation system was introduced to predict the ventilation performance of the apartments. This ventilation system was composed of the natural supply-air inlet and the forced exhaust-air outlet. Analysis was conducted by CFD technique and was performed on three ventilating flow rates; 30, 60, $120m^3/h$. As the results, residents feel comfortable thermally for $60m^3/h$. In the case of $120m^3/h$, however, residents feel uncomfortable both thermally and in air currents. In this study the energy saving for space heating is also an important factor. In the case of whole region with $180m^3/h$, residents feel comfortable at each region of the model apartment. It is shown that this hybrid ventilation system is possible method for the apartment house.

Experimental investigation of dew formation and heat transfer in the original upper structure of Sokkuram grotto (원형 석굴암 상부구조의 장마철 결로 및 열전달 현상의 실험적 연구)

  • 이진기;송태호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.588-597
    • /
    • 1999
  • Sokkuram grotto, a UNESCO cultural heritage in Kyongju Korea, was originally covered with crushed rocks over its dome with ventilating holes. The grotto was perfectly preserved for more than 12 centuries until the upper structure was replaced with a concrete dome in the early 20th century to protect from total collapse. Since then, heavy dew formed on the granite surface to seriously damage the sculptures until it was further remodeled with air-conditioning facilities in the 60s. It is considered that the original upper porous structure had a dehumidifying capability. This research is made to unveil the dehumidifying mechanism of the rock layer during the rainy season in that area. A rock layer and a concrete layer are tested in a temperature/humidity-controlled room. No dew formation is observed for the two specimen for continued sunny days or continued rainy days. However, heavy dew formed on the concrete surface for a sunny day after long rainy days. It is thought that the sun evaporates water on the ground and dew is formed at the surface as the highly humid air touches the yet cold concrete. On the contrary, no dew formation is observed for the rock layer at any time. Even in the above worst situation, air flows downward through the cool rock layer and moisture is removed before reaching inside. Temperature measurement, flow visualization, observation of dew formation and measurement of air velocity are made to verify the mechanisms.

  • PDF

The Measurement of Airtightness Performance of Multi-Family Housing (다가구 및 다세대 원룸주택의 기밀성능 실측연구)

  • Baek, Nam-Choon;Han, Seung-Hyeon;Lee, Wang-Je;Yoon, Jong-Ho;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.14 no.5
    • /
    • pp.117-121
    • /
    • 2014
  • Even though a study of airtightness performance of apartment and detached house have been done constantly, there are few of studies of multi-family housing which increasing every year. Therefore, this study analyzed airtightness performance of 20 households of one room in Daejeon to investigate airtightness performance standard. All experiments were performed under the same conditions except sealing windows to investigate airtightness performance without sealing windows (natural condition) and airtightness performance with sealing windows of studio apartment. As results, (1) average ACH50 without sealing windows was 19.2/h for pressurization, and 12.8/h for depressurization and (2) average ACH50 with sealing windows was 16.0/h for pressurization, and 10.7/h for depressurization and ACH50 in both condition, ACH50 under pressurization was about 50% higher than that under depressurization. Throughout this experiment, we can figure out that about 16% of air infiltration rate is occurred in windows, and the other 84% is occurred in rest of places such as Junction structure, socket and ventilating opening.

The Influence of Ventilation and Shade on the Mean Radiant Temperature of Summer Outdoor (통풍과 차양이 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.100-108
    • /
    • 2012
  • The purpose of the study was to evaluate the influence of shading and ventilation on Mean Radiant Temperature(MRT) of the outdoor space at a summer outdoor. The Wind Speed(WS), Air Temperature(AT) and Globe Temperature(GT) were recorded every minute from $1^{st}$ of May to the $30^{th}$ of September 2011 at a height of 1.2m above in four experimental plots with different shading and ventilating conditions, with a measuring system consisting of a vane type anemometer(Barini Design's BDTH), Resistance Temperature Detector(RTD, Pt-100), standard black globe(${\O}$ 150mm) and data acquisition systems(National Instrument's Labview and Compfile Techs' Moacon). To implement four different ventilating and shading conditions, three hexahedral steel frames, and one natural plot were established in the open grass field. Two of the steel frames had a dimension of $3m(W){\times}3m(L){\times}1.5m(H)$ and every vertical side covered with transparent polyethylene film to prevent lateral ventilation(Ventilation Blocking Plot: VP), and an additional shading curtain was applied on the top side of a frame(Shading and Ventilation Blocking Plot: SVP). The third was $1.5m(W){\times}1.5m(L){\times}1.5m(H)$, only the top side of which was covered by the shading curtain without the lateral film(Shading Plot: SP). The last plot was natural condition without any kind of shading and wind blocking material(Natural Open Plot: NP). Based on the 13,262 records of 44 sunny days, the time serial difference of AT and GT for 24 hour were analyzed and compared, and statistical analysis was done based on the 7,172 records of daytime period from 7 A.M. to 8 P.M., while the relation between the MRT and solar radiation and wind speed was analyzed based on the records of the hottest period from 11 A.M. to 4 P.M.. The major findings were as follows: 1. The peak AT was $40.8^{\circ}C$ at VP and $35.6^{\circ}C$ at SP showing the difference about $5^{\circ}C$, but the difference of average AT was very small within${\pm}1^{\circ}C$. 2. The difference of the peak GT was $12^{\circ}C$ showing $52.5^{\circ}C$ at VP and $40.6^{\circ}C$ at SP, while the gap of average GT between the two plots was $6^{\circ}C$. Comparing all four plots including NP and SVP, it can be said that the shading decrease $6^{\circ}C$ GT while the wind blocking increase $3^{\circ}C$ GT. 3. According to the calculated MRT, the shading has a cooling effect in reducing a maximum of $13^{\circ}C$ and average $9^{\circ}C$ MRT, while the wind blocking has heating effect of increasing average $3^{\circ}C$ MRT. In other words, the MRT of the shaded area with natural ventilation could be cooler than the wind blocking the sunny site to about $16^{\circ}C$ MRT maximum. 4. The regression and correlation tests showed that the shading is more important than the ventilation in reducing the MRT, while both of them do an important role in improving the outdoor thermal comfort. In summary, the results of this study showed that the shade is the first and the ventilation is the second important factor in terms of improving outdoor thermal comfort in summer daylight hours. Therefore, it can be apparently said that the more shade by the forest, shading trees etc., the more effective in conditioning the microclimate of an outdoor space reducing the useless or even harmful heat energy for human activities. Furthermore, the delicately designed wind corridor or outdoor ventilation system can improve even the thermal environment of urban area.

Preference of Stroke Patients for Bathroom Environment in Residential Space (뇌졸중 환자가 선호하는 주거공간의 욕실 환경 특성)

  • Lee, Kyoung-Min;Kim, Yu-Seon;Yoon, Su-Jeong;Hong, Ki-Hoon;Lee, Chun-Yeop
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.4 no.2
    • /
    • pp.31-40
    • /
    • 2014
  • Objective : The purpose of this study was to investigate the preference of bathroom environment for stroke patients. Methods : The subjects of this study were 97 who have experience in rehabilitation therapy at hospitals in Busan. A questionnaire was distributed and collected from February 24th to March 13th, 2014. Results : First, the subjects demand for improvement that non-slip tile and safety handle on bathtub. Second, they preferred the sliding door, sliding door handle, shower booth of convenient facility, non-slip tile, built-in cabinet, L-shaped safety handle, natural ventilating window, floor heating, easier bathtub to enter, bathtub with handle, tilted sink, water temperature index, toilet with safety handle, and bath chair. Conclusion : This study would contribute to bathroom environment for safety and ease in use.

  • PDF

Ventilation Effect of the Greenhouse with Folding Panel Type Windows (패널굴절방식 환기창 온실의 환기효과)

  • Kim, Jin-Young;Lee, Si-Young;Kim, Hyun-Hwan;Chun, Hee;Yun, In-Hak
    • Journal of Bio-Environment Control
    • /
    • v.11 no.1
    • /
    • pp.5-11
    • /
    • 2002
  • In this study, new development of natural ventilation window was accomplished to control environment of greenhouse with no use of farced ventilation during hot season. The ventilation effect of developed ventilation window was investigated in experimental greenhouse which was designed using side wall panel and folding type panel fur natural ventilation. Folding panel type ventilation window was designed to open upper part of the side wall and top of the roof using two hinges which are located bottom of the side wall and the roof panel to grab one side of each panels and guide the other side along with the guidance rail. Developed ventilation window has top ventilation part with maximum moving distance X=ι (1-cos$\theta$)=848.5 mm and side ventilation part with maximum moving distance Y=ι/2 $\times$sin$\theta$=1,184.4 mm at 45$^{\circ}$ of theoretical opening angle. It took 4.5 minutes to open roof vent fully and temperature at 1.2 and 0.8 m height decreased after 1 minute from starting opening and became equilibrium state maintaining 3-4$^{\circ}C$ difference after 2 minutes from complete opening. Air exchange rate was 15.2~39.3 h$^{-1}$ which was more than 10~15 h$^{-1}$ of continuous type and Venlo type greenhouse. The descent effect of temperature by ventilation windows was two times higher than Venlo type greenhouse.