• 제목/요약/키워드: natural stiffness matrix

검색결과 132건 처리시간 0.025초

Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation

  • Limkatanyu, Suchart;Kuntiyawichai, Kittisak;Spacone, Enrico;Kwon, Minho
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.39-53
    • /
    • 2012
  • This paper presents an alternative way to derive the exact element stiffness matrix for a beam on Winkler foundation and the fixed-end force vector due to a linearly distributed load. The element flexibility matrix is derived first and forms the core of the exact element stiffness matrix. The governing differential compatibility of the problem is derived using the virtual force principle and solved to obtain the exact moment interpolation functions. The matrix virtual force equation is employed to obtain the exact element flexibility matrix using the exact moment interpolation functions. The so-called "natural" element stiffness matrix is obtained by inverting the exact element flexibility matrix. Two numerical examples are used to verify the accuracy and the efficiency of the natural beam element on Winkler foundation.

Damage assessment in periodic structures from measured natural frequencies by a sensitivity and transfer matrix-based method

  • Zhu, Hongping;Li, Lin;Wang, Dansheng
    • Structural Engineering and Mechanics
    • /
    • 제16권1호
    • /
    • pp.17-34
    • /
    • 2003
  • This paper presents a damage assessment procedure applied to periodic spring mass systems using an eigenvalue sensitivity-based method. The damage is directly related to the stiffness reduction of the damage element. The natural frequencies of periodic structures with one single disorder are found by adopting the transfer matrix approach, consequently, the first order approximation of the natural frequencies with respect to the disordered stiffness in different elements is used to form the sensitivity matrix. The analysis shows that the sensitivity of natural frequencies to damage in different locations depends only on the mode number and the location of damage. The stiffness changes due to damage can be identified by solving a set of underdetermined equations based on the sensitivity matrix. The issues associated with many possible damage locations in large structural systems are addressed, and a means of improving the computational efficiency of damage detection while maintaining the accuracy for large periodic structures with limited available measured natural frequencies, is also introduced in this paper. The incomplete measurements and the effect of random error in terms of measurement noise in the natural frequencies are considered. Numerical results of a periodic spring-mass system of 20 degrees of freedom illustrate that the proposed method is simple and robust in locating single or multiple damages in a large periodic structure with a high computational efficiency.

Analytical solution for natural frequency of monopile supported wind turbine towers

  • Rong, Xue-Ning;Xu, Ri-Qing;Wang, Heng-Yu;Feng, Su-Yang
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.459-474
    • /
    • 2017
  • In this study an analytical expression is derived for the natural frequency of the wind turbine towers supported on flexible foundation. The derivation is based on a Euler-Bernoulli beam model where the foundation is represented by a stiffness matrix. Previously the natural frequency of such a model is obtained from numerical or empirical method. The new expression is based on pure physical parameters and thus can be used for a quick assessment of the natural frequencies of both the real turbines and the small-scale models. Furthermore, a relationship between the diagonal and non-diagonal element in the stiffness matrix is introduced, so that the foundation stiffness can be obtained from either the p-y analysis or the loading test. The results of the proposed expression are compared with the measured frequencies of six real or model turbines reported in the literature. The comparison shows that the proposed analytical expression predicts the natural frequency with reasonable accuracy. For two of the model turbines, some errors were observed which might be attributed to the difference between the dynamic and static modulus of saturated soils. The proposed analytical solution is quite simple to use, and it is shown to be more reasonable than the analytical and the empirical formulas available in the literature.

동강성법을 이용한 코일스프링의 진동 해석 (Vibration Analysis of a Coil Spring by Using Dynamic Stiffness Method)

  • 이재형;김성걸;허승진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1933-1938
    • /
    • 2000
  • The partial differential equations for a coil spring derived from Timoshenko beam theory and Frenet formulae. Dynamic stiffness matrix of a coil spring composed of a circular wire is assembled by using dispersion relationship, waves and natural frequencies. Natural frequencies are obtained from maxima in the determinant of inverse of a dynamic stiffness matrix with appropriate boundary conditions. The results of the dynamic stiffness method are compared with those of transfer matrix method, finite element method and test.

  • PDF

Dynamic stiffness matrix of an axially loaded slenderdouble-beam element

  • Jun, Li;Hongxing, Hua;Xiaobin, Li
    • Structural Engineering and Mechanics
    • /
    • 제35권6호
    • /
    • pp.717-733
    • /
    • 2010
  • The dynamic stiffness matrix is formulated for an axially loaded slender double-beam element in which both beams are homogeneous, prismatic and of the same length by directly solving the governing differential equations of motion of the double-beam element. The Bernoulli-Euler beam theory is used to define the dynamic behaviors of the beams and the effects of the mass of springs and axial force are taken into account in the formulation. The dynamic stiffness method is used for calculation of the exact natural frequencies and mode shapes of the double-beam systems. Numerical results are given for a particular example of axially loaded double-beam system under a variety of boundary conditions, and the exact numerical solutions are shown for the natural frequencies and normal mode shapes. The effects of the axial force and boundary conditions are extensively discussed.

Free Vibration Analysis of Axisymmetric Conical Shell

  • Choi, Myung-Soo;Yeo, Dong-Jun;Kondou, Takahiro
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.5-16
    • /
    • 2016
  • Generally, methods using transfer techniques, like the transfer matrix method and the transfer stiffness coefficient method, find natural frequencies using the sign change of frequency determinants in searching frequency region. However, these methods may omit some natural frequencies when the initial frequency interval is large. The Sylvester-transfer stiffness coefficient method ("S-TSCM") can always obtain all natural frequencies in the searching frequency region even though the initial frequency interval is large. Because the S-TSCM obtain natural frequencies using the number of natural frequencies existing under a searching frequency. In this paper, the algorithm for the free vibration analysis of axisymmetric conical shells was formulated with S-TSCM. The effectiveness of S-TSCM was verified by comparing numerical results of S-TSCM with those of other methods when analyzing free vibration in two computational models: a truncated conical shell and a complete (not truncated) conical shell.

균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도 (Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation)

  • 김문영;윤희택;곽태영
    • 한국전산구조공학회논문집
    • /
    • 제15권3호
    • /
    • pp.463-469
    • /
    • 2002
  • 탄성지반 위에 놓인 보-기둥 요소의 총포텐셜 에너지로부터 변분원리를 적용하여 지배방정식과 힘-변위 관계식을 유도하였다. 4계 상미분방정식 형태의 지배방정식을 4개의 변위 파라메타를 도입하여 1계 연립미분방정식 형태의 선형 고유치 문제로 전환하고, 힘-변위 관계식을 적용하여 엄밀한 정적, 동적 요소강성행렬을 유도하였다. 직접강성법을 이용하여 구조물 강성행렬을 구하고, 2차원 보-기둥구조의 엄밀한 좌굴하중과 고유진동수를 구하고, 결과를 유한요소해와 비교함으로써 본 연구의 타당성을 검증하였다. 이러한 엄밀한 해석방법은 Hermitian 다항식을 형상함수로 도입하여 요소의 강성행렬을 산정하는 유한요소법과 비교할 때, 요소의 수를 대폭 줄일 수 있는 장점이 있다.

On triply coupled vibration of eccentrically loaded thin-walled beam using dynamic stiffness matrix method

  • Ghandi, Elham;Shiri, Babak
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.759-769
    • /
    • 2017
  • The effect of central axial load on natural frequencies of various thin-walled beams, are investigated by some researchers using different methods such as finite element, transfer matrix and dynamic stiffness matrix methods. However, there are situations that the load will be off centre. This type of loading is called eccentric load. The effect of the eccentricity of axial load on the natural frequencies of asymmetric thin-walled beams is a subject that has not been investigated so far. In this paper, the mentioned effect is studied using exact dynamic stiffness matrix method. Flexure and torsion of the aforesaid thin-walled beam is based on the Bernoulli-Euler and Vlasov theories, respectively. Therefore, the intended thin-walled beam has flexural rigidity, saint-venant torsional rigidity and warping rigidity. In this paper, the Hamilton‟s principle is used for deriving governing partial differential equations of motion and force boundary conditions. Throughout the process, the uniform distribution of mass in the member is accounted for exactly and thus necessitates the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, in order to verify the accuracy of the presented theory, the numerical solutions are given and compared with the results that are available in the literature and finite element solutions using ABAQUS software.

비대칭 박벽보에 대한 엄밀한 동적 강도행렬의 유도 (Derivation of Exact Dynamic Stiffness Matrix for Non-Symmetric Thin-walled Straight Beams)

  • 김문영;윤희택
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.369-376
    • /
    • 2000
  • For the general loading condition and boundary condition, it is very difficult to obtain closed-form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. Consequently most of previous finite element formulations introduced approximate displacement fields using shape functions as Hermitian polynomials, isoparametric interpoation function, and so on. The purpose of this study is to calculate the exact displacement field of a thin-walled straight beam element with the non-symmetric cross section and present a consistent derivation of the exact dynamic stiffness matrix. An exact dynamic element stiffness matrix is established from Vlasov's coupled differential equations for a uniform beam element of non-symmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequencies are evaluated for the non-symmetric thin-walled straight beam structure, and the results are compared with available solutions in order to verify validity and accuracy of the proposed procedures.

  • PDF

Exact dynamic element stiffness matrix of shear deformable non-symmetric curved beams subjected to initial axial force

  • Kim, Nam-Il;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제19권1호
    • /
    • pp.73-96
    • /
    • 2005
  • For the spatially coupled free vibration analysis of shear deformable thin-walled non-symmetric curved beam subjected to initial axial force, an exact dynamic element stiffness matrix of curved beam is evaluated. Firstly equations of motion and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next a system of linear algebraic equations are constructed by introducing 14 displacement parameters and transforming the second order simultaneous differential equations into the first order simultaneous differential equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact $14{\times}14$ dynamic element stiffness matrix is determined using force-deformation relations. To demonstrate the accuracy and the reliability of this study, the spatially coupled natural frequencies of shear deformable thin-walled non-symmetric curved beams subjected to initial axial forces are evaluated and compared with analytical and FE solutions using isoparametric and Hermitian curved beam elements and results by ABAQUS's shell elements.