• 제목/요약/키워드: natural production preservatives

검색결과 16건 처리시간 0.025초

Minimum Inhibitory Concentration (MIC) of Propionic Acid, Sorbic Acid, and Benzoic Acid against Food Spoilage Microorganisms in Animal Products to Use MIC as Threshold for Natural Preservative Production

  • Yeongeun Seo;Miseon Sung;Jeongeun Hwang;Yohan Yoon
    • 한국축산식품학회지
    • /
    • 제43권2호
    • /
    • pp.319-330
    • /
    • 2023
  • Some preservatives are naturally contained in raw food materials, while in some cases may have been introduced in food by careless handling or fermentation. However, it is difficult to distinguish between intentionally added preservatives and the preservatives naturally produced in food. The objective of this study was to evaluate the minimum inhibitory concentration (MIC) of propionic acid, sorbic acid, and benzoic acid for inhibiting food spoilage microorganisms in animal products, which can be useful in determining if the preservatives are natural or not. The broth microdilution method was used to determine the MIC of preservatives for 57 microorganisms. Five bacteria that were the most sensitive to propionic acid, benzoic acid, and sorbic acid were inoculated in unprocessed and processed animal products. A hundred microliters of the preservatives were then spiked in samples. After storage, the cells were counted to determine the MIC of the preservatives. The MIC of the preservatives in animal products ranged from 100 to 1,500 ppm for propionic acid, from 100 to >1,500 ppm for benzoic acid, and from 100 to >1,200 ppm for sorbic acid. Thus, if the concentrations of preservatives are below the MIC, the preservatives may not be added intentionally. Therefore, the MIC result will be useful in determining if preservatives are added intentionally in food.

Cloning, Characterization, and Production of a Novel Lysozyme by Different Expression Hosts

  • Zhang, Haifeng;Fu, Gang;Zhang, Dawei
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권10호
    • /
    • pp.1405-1412
    • /
    • 2014
  • Lysozyme is a protein found in egg white, tears, saliva, and other secretions. As a marketable natural alternative to preservatives, lysozyme can act as a natural antibiotic. In this study, we have isolated Bacillus licheniformis TIB320 from soil, which contains a lysozyme gene with various features. We have cloned and expressed the lysozyme in E. coli. The antimicrobial activity of the lysozyme showed that it had a broad antimicrobial spectrum against several standard strains. The lysozyme could maintain efficient activities in a pH range between 3 and 9 and from $20^{\circ}C$ to $60^{\circ}C$, respectively. The lysozyme was resistant to pepsin and trypsin to some extent at $40^{\circ}C$. Production of the lysozyme was optimized by using various expression strategies in B. subtilis WB800. The lysozyme from B. licheniformis TIB320 will be promising as a food or feed additive.

천연 식품 첨가물 개발 및 연구동향 (Trends in Development and Research of Natural Food Additives)

  • 이형주
    • 한국식품위생안전성학회:학술대회논문집
    • /
    • 한국식품위생안전성학회 1994년도 하계 학술 심포지움
    • /
    • pp.17-22
    • /
    • 1994
  • Food additives are minor components which are used to enhance nutritive or sensory values, and to improve shelf life of foods. In foods, natural additives are preferred over artificial or synthetic materials because of concern on food safety. Many biotechnological techniques have been applied to the production of food additives since the biotechnology has been utilized to prodyce many flavor components such as glutamate, 5'-nucleotides, esters, 2,3-bytadione, pyrazines, terpenes, and lactones. Natural flavors, fragrances, sweetners, and colorants can be produced by plant cell culture. Many lactic acid bacteria produce bacteriocins such as nisin or diplococcin. These bacteriocins are used as safe preservatives in foods and many researches on the improvenment of bacteriocin productivity by genetic engineering are in progress.

  • PDF

Antimicrobial Activity of Propolis Extract and Their Application as a Natural Preservative in Livestock Products: A Meta-Analysis

  • Andre, Andre;Arief, Irma Isnafia;Apriantini, Astari;Jayanegara, Anuraga;Budiman, Cahyo
    • 한국축산식품학회지
    • /
    • 제42권2호
    • /
    • pp.280-294
    • /
    • 2022
  • This study aimed to evaluate the effectiveness of propolis extract as a natural preservative for livestock products in term of chemical and microbiological characteristics by meta-analysis. The stages carried out in this study were identification, selection, checking suitability, and the resulting selected articles were used in the meta-analysis. The selection results obtained a total of 22 selected journal articles consisting of 9 articles for analysis of the antimicrobial activity of propolis extract and 13 articles for analysis of the chemical and mirobiological characteristics of livestock products. The articles were obtained from electronic databases, namely Science Direct and Google Scholar. The model used in this study is the random-effect model involving two groups, control and experimental. Heterogeneity and effect size values were carried out in this study using Hedge's obtained through openMEE software. Forest plot tests and data validation on publication bias was obtained using Kendall's test throught JASP 0.14.1 software. The results showed that there is a significant relationship between propolis extract with the results of the antimicrobial activity (p<0.05). In addition, the results of the application of propolis extract on the livestock products for the test microbes and the value of thiobarbituric acid reactive substances (TBARs) showed significant results (p<0.05). Conclusion based on the random-effect model on the effectiveness of antimicrobial activity of propolis extract and their apllication as a natural preservative of the chemical and microbiological characteristics of livestock products is valid by Kendall's test (p>0.05). Propolis in this case effectively used as natural preservatives in livestock products.

Role of Organic Spices in the Preservation of Traditionally Fermented Kunun-zaki

  • Williana, N. Mokoshe;Babasola, A. Osopale;Cajethan, O. Ezeamagu;Fapohunda, Stephen O.
    • 한국미생물·생명공학회지
    • /
    • 제49권2호
    • /
    • pp.192-200
    • /
    • 2021
  • Kunun-zaki, produced by submerged fermentation of a combination of millet and sorghum, is a popular beverage in Northern Nigeria. Owing to the nature of the process involved in its production, kunun-zaki is highly susceptible to contamination by food spoilage microorganisms, leading to inconsistent quality and short shelf-life. In this study, we investigated various food spices, including cinnamon, garlic, and nutmeg, as potential preservatives that could be used to extend kunun-zaki shelf-life. Kunun-zaki varieties were fermented with each of these spices mentioned above and subjected to bacterial, nutritional, sensory, and quality maintenance assessments (using a twelve-member sensory panel to evaluate the organoleptic properties of kunun-zaki). Bacterial counts in the final products ranged between 105-7 CFU/ml. We identified two bacterial genera, Weissella and Enterococcus, based on partial 16S rRNA gene amplicon sequencing. Three amino acids, namely leucine, aspartate, and glutamate, were abundant in all kunun-zaki varieties, while the total essential amino acid content was above 39%, suggesting that kunun-zaki could potentially be considered as a protein-rich food source both for infants and adults. The kunun-zaki products were also rich in carbohydrates, crude proteins, ash, crude fiber, and fat, with contents estimated as 81-84, 8-11, 0.8-4.0, 2.9-3.58, and 5.1-6.3%, respectively. However, this nutritional content depreciated rapidly after 24 h of storage, except for kunun-zaki fermented with garlic, which its crude protein and fat content was maintained for up to 48 h. Our results revealed that organic spices increased the nutritional content of the kunun-zaki varieties and could be potentially be used as natural preservatives for enhancing the kunun-zaki shelf-life. However, garlic might be considered a better alternative based on our preliminary investigation. The presence of the isolated microorganisms in the analyzed kunun-zaki samples should be highlighted to raise awareness on the possible health hazards that could arise from poor handling and processing techniques.

Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology

  • Yu, Hyung-Seok;Lee, Na-Kyoung;Jeon, Hye-Lin;Eom, Su Jin;Yoo, Mi-Young;Lim, Sang-Dong;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제36권3호
    • /
    • pp.427-434
    • /
    • 2016
  • Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

곰팡이 생육 및 곰팡이 독소 생산의 억제에 있어서의 유산균의 역할 (The Roles of Lactic Acid Bacteria for Control of Fungal Growth and Mycotoxins)

  • 김지후;이희섭
    • 생명과학회지
    • /
    • 제30권12호
    • /
    • pp.1128-1139
    • /
    • 2020
  • 최근 기후의 급속한 변화에 따라서 식품과 농산물에 Aspergillus, Fusarium 및 Penicillium속에 해당하는 곰팡이에 의한 오염이 빈번하고 이들에 의해 생성되는 aflatoxins, fumonisins, ochratoxins, patulin, trichothecenes, zearalenone등의 곰팡이 독소로 인해서 인간의 건강에 위해를 끼치고 또한 경제적인 손실을 가져오게 하고 있다. 최근 건강에 대한 소비자의 관심으로 인하여 기존에 사용되고 있는 프로피온산 및 소브산과 같은 보존료에 대한 거부감이 증가하고 있어 천연의 소재로부터 이를 대체할 만한 항진균제의 개발이 필요한 상황이다. 본 총설에서는 곰팡이의 생육 및 독소 생성을 제어하기 위한 생물학적 방법으로 유산균의 역할에 대하여 살펴보고자 하였다. 최근의 연구에 의하면 유산균은 저분자 화합물인 유기산, reuterin, 단백질 유래 화합물, 하이드록시 지방산, 페놀 화합물과 같은 다양한 대사산물을 통하여 곰팡이의 생육을 효과적으로 억제시키고 있으며, 또한 유산균의 세포벽 구성성분과의 흡착, 곰팡이 독소의 분해 및 곰팡이 독소의 생산 저해 등을 통하여 곰팡이 독소의 생산을 감소시키고 있는 사실이 제시되고 있다. 유산균은 다양한 종류를 포함하고 있으며 다양한 대사산물을 생산하고 있으므로 이를 바탕으로 효과적으로 곰팡이의 생육 및 독소 생산을 제어할 수 있는 잠재력 갖추고 있으므로, 유산균은 식품에 있어서 곰팡이의 생육을 조절하는 소재로서 주목 받을 것으로 기대된다.

치즈 숙성 중의 곰팡이 오염 방제 - 현황과 전망 (Prevention of Fungal Contamination during Cheese Ripening - Current Situation and Future Prospects)

  • 정후길;최하늘;오현희;허창기;양희선;오전희;박종혁;최희영;김경희;이승구
    • Journal of Dairy Science and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.75-81
    • /
    • 2012
  • Molds cause severe cheese deterioration, even though some white and blue molds are used for the manufacture of Camembert and Blue cheese, respectively. The species of Geotrichum, Moniliella, Aspergillus, Penicillium, Mucor, Fusarium, Phoma, and Cladosporium are the main fungi that affect contamination during cheese ripening. Once deteriorated by fungal spoilage, cheese becomes toxic and inedible. Fungal deterioration of cheese decreases the nutritional value, flavor profiles, physicochemical and organoleptic properties, and increases toxicity and infectious disease. Fungal contamination during cheese ripening is highly damaging to cheese production in Korean farmstead milk processing companies. Therefore, these companies hesitate to develop natural and ripened cheese varieties. This article discusses the recent and ongoing developments in the removal techniques of fungal contamination during cheese ripening. There are 2 categories of antifungal agents: chemical and natural. Major chemical agents are preservatives (propionic acid, sodium propionate, and calcium propionate) and ethanol. Among the natural agents, grapefruit seed extract, phytoncide, essential oils, and garlic have been investigated as natural antifungal agents. Additionally, some studies have shown that antibiotics such as natamycin and Delvocid$^{(R)}$, have antifungal activities for cheese contaminated with fungi. Microbial resources such as probiotic lactic acid bacteria, Propionibacterium, lactic acid bacteria from Kimchi, and bacteriocin are well known as antifungal agents. In addition, ozonization treatment has been reported to inhibit the growth activity of cheese-contaminating fungi.

  • PDF

유산균의 곰팡이 억제 활성 (Inhibitory Activity of Lactic Acid Bacteria against Fungal Spoilage)

  • 설국환;유자연;윤정희;오미화;함준상
    • Journal of Dairy Science and Biotechnology
    • /
    • 제37권2호
    • /
    • pp.83-93
    • /
    • 2019
  • Food spoilage by fungi is responsible for considerable food waste and economical losses. Among the food products, fermented dairy products are susceptible to deterioration due to the growth of fungi, which are resistant to low pH and can proliferate at low storage temperatures. For controlling fungal growth in dairy products, potassium sorbate and natamycin are the main preservatives used, and natamycin is approved by most countries for use in cheese surface treatment. However, a strong societal demand for less processed and preservative-free food has emerged. In the dairy products, lactic acid bacteria (LAB) are naturally present or used as cultures and play a key role in the fermentation process. Fermentation is a natural preservation technique that improves food safety, nutritional value, and specific organoleptic features. Production of organic acids is one of the main features of the LAB used for outcompeting organisms that cause spoilage, although other mechanisms such as antifungal peptides obtained from the cleavage of food proteins and competition for nutrients also play a role. More studies for better understanding these mechanisms are required to increase antifungal LAB available in the market.

축산업 분야에서의 박테리오신의 산업적 이용 및 향후 전망 (Perspectives for the Industrial Use of Bacteriocin in Dairy and Meat Industry)

  • 이나경;이주연;곽형근;백현동
    • 한국축산식품학회지
    • /
    • 제28권1호
    • /
    • pp.1-8
    • /
    • 2008
  • 최근까지 박테리오신 생산균주의 분리, 분자생물학적 메커니즘, 정제, 구조 및 작용기작, 산업적인 적용 등의 논문 등이 보고되고 있다. 또한 50개국 이상에서 치즈, 통조림식품 등에서 식품보존제로서 승인되어 있다. 박테리오신의 여러 장점으로 인해 현재 추진되고 있는 축산업 분야의 HACCP의 범위인, 사육장에서부터 식품제조에 이르기까지 항생물질, 인공적인 방부제나 식품첨가물이 적게 들어가거나 첨가되지 않은 자연식품을 선호하고 있는 실정에 적합하다. 향후 축산업에서 항생제 대체방안의 하나로서 박테리오신의 사용은 확대되리라 기대된다. 경제적인 가격 경쟁력을 갖기 위해, 대량생산에 대한 연구가 이루어져야 하며, 적절한 제형으로 보다 구체적인 적용실험이 수행되어 산업화를 앞당겨야 한다.