Browse > Article
http://dx.doi.org/10.22424/jmsb.2019.37.2.83

Inhibitory Activity of Lactic Acid Bacteria against Fungal Spoilage  

Seol, Kuk-Hwan (National Institute of Animal Science, RDA)
Yoo, Jayeon (National Institute of Animal Science, RDA)
Yun, Jeonghee (National Institute of Animal Science, RDA)
Oh, Mi-Hwa (National Institute of Animal Science, RDA)
Ham, Jun-Sang (National Institute of Animal Science, RDA)
Publication Information
Journal of Dairy Science and Biotechnology / v.37, no.2, 2019 , pp. 83-93 More about this Journal
Abstract
Food spoilage by fungi is responsible for considerable food waste and economical losses. Among the food products, fermented dairy products are susceptible to deterioration due to the growth of fungi, which are resistant to low pH and can proliferate at low storage temperatures. For controlling fungal growth in dairy products, potassium sorbate and natamycin are the main preservatives used, and natamycin is approved by most countries for use in cheese surface treatment. However, a strong societal demand for less processed and preservative-free food has emerged. In the dairy products, lactic acid bacteria (LAB) are naturally present or used as cultures and play a key role in the fermentation process. Fermentation is a natural preservation technique that improves food safety, nutritional value, and specific organoleptic features. Production of organic acids is one of the main features of the LAB used for outcompeting organisms that cause spoilage, although other mechanisms such as antifungal peptides obtained from the cleavage of food proteins and competition for nutrients also play a role. More studies for better understanding these mechanisms are required to increase antifungal LAB available in the market.
Keywords
antifungal activity; lactic acid bacteria; fermentation; biopreservation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhang, C., Brandt, M. J., Schwab, C. and Ganzle, M. G. 2010. Propionic acid production by cofermentation of Lactobacillus buchneri and Lactobacillus diolivorans in sourdough. Food Microbiol. 27:390-395.   DOI
2 Urbiene, S. and Leskauskaite, D. 2006. Formation of some organic acids during fermentation of milk. Pol. J. Food Nutr. Sci. 56:277-281.
3 Arena, M. P., Silvain, A., Normanno, G., Grieco, F., Drider, D., Spano, G. and Fiocco, D. 2016. Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Front. Microbiol. 7:464.
4 Chen, C., Chen, X., Jiang, M., Rui, X., Li, W. and Dong, M. 2014. A newly discovered bacteriocin from Weissella hellenica D1501 associated with Chinese Dong fermented meat (Nanx Wudl). Food Control. 42:116-124.   DOI
5 Brosnan, B., Coffey, A., Arendt, E. K. and Furey, A. 2012. Rapid identification, by use of the LTQ Orbitrap hybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria. Anal. Bioanal. Chem. 403:2983-2995.   DOI
6 Brudzynski, K., Abubaker, K., St-Martin, L. and Castle, A. 2011. Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Front. Microbiol. 2:213.   DOI
7 Bruni, N., Capuccino, M. T., Biasibetti, E., Pessione, E., Cirrincione, S., Giraudo, L., Corona, A. and Dosio, F. 2016. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules. 21:752.   DOI
8 Cleusix, V., Lacroix, C., Vollenweider, S., Duboux, M. and Le Blay, G. 2007. Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol. 7:101.   DOI
9 Corsetti, A., Gobbetti, M., Rossi, J. and Damiani, P. 1998. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl. Microbiol. Biotechnol. 50:253-256.   DOI
10 Lastauskiene, E., Zinkeviciene, A., Girkontaite, I., Kaunietis, A. and Kvedariene, V. 2014. Formic acid and acetic acid induce a programmed cell death in pathogenic Candida species. Curr. Microbiol. 69:303-310.   DOI
11 Le Lay, C., Coton, E., Le Blay, G., Chobert, J. M., Haertle, T., Choiset, Y., Van Long, N. N., Meslet-Cladiere, L. and Mounier, J. 2016. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. Int. J. Food Microbiol. 239:79-85.   DOI
12 Leon Pelaez, A. M., Serna Catano, C. A., Quintero Yepes, E. A., Gamba Villarroel, R. R., De Antoni, G. L. and Giannuzzi, L. 2012. Inhibitory activity of lactic acid and acetic acid on Aspergillus flavus growth for food preservation. Food Control. 24:177-183.   DOI
13 Leyva Salas, M., Mounier, J., Valence, F., Coton, M., Thierry, A. and Coton, E. 2017. Antifungal microbial agents for food biopreservation-a review. Microorganisms. 5:37.   DOI
14 Lindgren, S. E. and Dobrogosz, W. J. 1990. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol. Rev. 7:149-163.   DOI
15 Liu, Z., Zeng, M., Dong, S., Xu, J., Song, H. and Zhao, Y. 2007. Effect of an antifungal peptide from oyster enzymatic hydrolysates for control of gray mold (Botrytis cinerea) on harvested strawberries. Postharvest Biol. Technol. 46:95-98.   DOI
16 Lupetti, A., Paulusma-Annema, A., Welling M. M., Senesi, S., van Dissel, J. T. and Nibbering, P. H. 2000. Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrob. Agents Chemother. 44:3257-3263.   DOI
17 Yeaman, M. R. and Yount, N. Y. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55:27-55.   DOI
18 Vandenbergh, P. A. 1993. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev. 12:221-237.   DOI
19 Yang, E. J. Kim, Y. S. and Chang, H. C. 2011. Purification and characterization of antifungal $\delta$-dodecalactone from Lactobacillus plantarum AF1 isolated from Kimchi. J. Food Prot. 74:651-657.   DOI
20 Yang, E., Fan, L., Jiang, Y., Doucette, C. and Fillmore, S. 2012. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express. 2:1-12.   DOI
21 Yu, H. S., Lee, N. K., Jeon, H. L., Eom, S. J., Yoo, M. Y., Lim S. D. and Paik, H. D. 2016. Benzoic acid production with respect to starter culture and incubation temperature during yogurt fermentation using response surface methodology. Korean J. Food Sci. Anim. Resour. 36:427-434.   DOI
22 Zerva, L., Hollis, R. J. and Pfaller, M. A. 1996. In vitro susceptibility testing and DNA typing of Saccharomyces cerevisiae clinical isolates. J. Clin. Microbiol. 34:3031-3034.   DOI
23 Niku-Paavola, M. L., Laitila, A., Mattila-Sandholm, T. and Haikara, A. 1999. New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol. 86:29-35.   DOI
24 Crowley, S., Mahony, J. and van Sinderen, D. 2013. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends Food Sci. Technol. 33:93-109.   DOI
25 De Vuyst, L. and Leroy, F. 2007. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13:194-199.   DOI
26 Maple, P. A., Hamilton-Miller, J. M. and Brumfitt, W. 1992. Comparison of the in-vitro activities of the topical antimicrobials azelaic acid, nitrofurazone, silver sulphadiazine and mupirocin against methicillin-resistant Staphylococcus aureus. J. Antimicro. Chemother. 29:661-668.   DOI
27 Narendranath, N. V., Thomas, K. C. and Ingledew, W. M. 2001. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J. Ind. Microbiol. Biotechnol. 26:171-177.   DOI
28 Ndagano, D., Lamoureux, T., Dortu, C., Vandermoten, S. and Thonart, P. 2011. Antifungal activity of 2 lactic acid bacteria of the Weissella Genus isolated from food. J. Food Sci. 76:M305-M311.   DOI
29 Olonisakin, O. O., Jeff-Agboola, Y. A., Ogidi, C. O. and Akinyele, B. J. 2017. Isolation of antifungal lactic acid bacteria (LAB) from "Kunu" against toxigenic Aspergillus flavus. Prev. Nutr. Food Sci. 22:138-143.   DOI
30 Ostling, C. E. and Lindgren, S. E. 1993. Inhibition of enterobacteria and Listeria growth by lactic, acetic and formic acids. J. Appl. Bacteriol. 75:18-24.   DOI
31 Ozcelik, S., Kuley, E. and Ozogul, F. 2016. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT-Food Sci. Technol. 73:536-542.   DOI
32 Qvirist, L. A., De Filippo, C., Strati, F., Stefanini, I., Sordo, M., Andlid, T., Felis, G. E., Mattarelli, P. and Cavalieri, D. 2016. Isolation, identification and characterization of yeasts from fermented goat milk of the Yaghnob valley in Tajikistan. Front. Microbiol. 7:1-17.
33 Berni, E. and Scaramuzza, N. 2013. Effect of ethanol on growth of Chrysonilia sitophila ('the red bread mould') and Hyphopichia burtonii ('the chalky mould') in sliced bread. Lett. Appl. Microbiol. 57:344-349.   DOI
34 Arroyo-Lopez, F. N., Bautista-Gallego, J., Duran-Quintana, M. C. and Garrido-Fernandez, A. 2008. Modelling the inhibition of sorbic and benzoic acids on a native yeast cocktail from table olives. Food Microbiol. 25:566-574.   DOI
35 Aunsbjerg, S. D., Honore, A. H., Marcussen, J., Ebrahimi, P., Vogensen, F. K., Benfeldt, C., Skov, T. and Knochel, S. 2015. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt. Int. J. Food Microbiol. 194:46-53.   DOI
36 Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S. and Tomita, M. 1993. Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med. Microbiol. Immunol. 182:97-105.   DOI
37 Black, B. A., Zannini, E., Curtis, J. M. and Ganzle, M. G. 2013. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread. Appl. Environ. Microbiol. 79:1866-1873.   DOI
38 Farmery, M., Jones', C., Eady, E., Cove, J. and Cunliffe, W. 1994. In vitro activity of azelaic acid, benzoyl peroxide and zinc acetate against antibiotic-resistant propionibacteria from acne patients. J. Dermatolog. Treat. 5:63-65.   DOI
39 Elshaghabee, F. M., Bockelmann, W., Meske, D., de Vrese, M., Walte, H. G., Schrezenmeir, J. and Heller, K. J. 2016. Ethanol production by selected intestinal microorganisms and lactic acid bacteria growing under different nutritional conditions. Front. Microbiol. 7:47.   DOI
40 Engels, C., Schwab, C., Zhang, J., Stevens, M. J., Bieri, C., Ebert, M. O., McNeill K., Sturla, S. J. and Lacroix C. 2016. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Sci. Rep. 6:36246.   DOI
41 Faruck, M. O., Yusof, F. and Chowdhury, S. 2016. An overview of antifungal peptides derived from insect. Peptides. 80:80-88.   DOI
42 Fermandes, K. E. and Carter, D. A. 2017. The antifungal activity of lactoferrin and its derived peptides: mechanisms of action and synergy with drugs against fungal pathogens. Front. Microbiol. 8:2.
43 Ganzle, M. G. and Vogel, R. F. 2003. Studies on the mode of action of reutericyclin. Appl. Environ. Microbiol. 69:1305-1307.   DOI
44 Ryan, L. A., Dal Bello, F., Arendt, E. K. and Koehler, P. 2009. Detection and quantitation of 2,5-diketopiperazines in wheat sourdough and bread. J. Agric. Food Chem. 57:9563-9568.   DOI
45 Rautenbach, M., Troskie, A. M. and Vosloo, J. A. 2016. Antifungal peptides: to be or not to be membrane active. Biochimie. 130:132-145.   DOI
46 Rizzello, C. G., Cassone, A., Coda, R. and Gobbetti, M. 2011. Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food Chem. 127:952-959.   DOI
47 Russo, P., Fares, C., Longo, A., Spano, G. and Capozzi, V. 2017. Lactobacillus plantarum with broad antifungal activity as a protective starter culture for bread production. Foods. 6:110.   DOI
48 Ryan, L. A., Zannini, E., Dal Bello, F., Pawlowska, A., Koehler, P. and Arendt, E. K. 2011. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. Int. J. Food Microbiol. 146:276-283.   DOI
49 Sah, B. N. P., Vasiljevic, T., McKechnie, S. and Donkor, O. N. 2018. Antioxidative and antibacterial peptides derived from bovine milk proteins. Crit. Rev. Food Sci. Nutr. 58:726-740.   DOI
50 Schaefer, L., Auchtung, T. A., Hermans, K. E., Whitehead, D., Borhan, B. and Britton, R. A. 2010. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology. 156:1589-1599.   DOI
51 Schnurer, J. and Magnusson, J. 2005. Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Technol. 16:70-78.   DOI
52 Guo, J., Brosnan, B., Furey, A., Arendt, E., Murphy, P. and Coffey, A. 2012. Antifungal activity of Lactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Bioeng. Bugs. 3:104-113.
53 Bougherra, F., Dilmi-Bouras, A., Balti, R., Przybylski, R., Adoui, F., Elhameur, H., Chevalier, M., Flahaut, C., Dhulster, P. and Naima, N. 2017. Antibacterial activity of new peptide from bovine casein hydrolyzed by a serine metalloprotease of Lactococcus lactis subsp. lactis BR16. J. Funct. Foods. 32:112-122.   DOI
54 Broberg, A., Jacobsson, K., Strom, K. and Schnurer, J. 2007. Metabolite profiles of lactic acid bacteria in grass silage. Appl. Environ. Microbiol. 73:5547-5552.   DOI
55 Garmiene, G., Salomskiene, J., Jasutiene, I., Macioniene, I. and Miliauskiene, I. 2010. Production of benzoic acid by lactic acid bacteria from Lactobacillus, Lactococcus and Streptococcus genera in milk. Milchwissenschaft. 65:295-298.
56 Gerwien, F., Skrahina, V., Kasper, L., Hube, B. and Brunke, S. 2018. Metals in fungal virulence. FEMS Microbiol. Rev. 42:1-21.
57 Gifford, J. L., Hunter, H. N. and Vogel, H. J. 2005. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol. Life Sci. 62:2588-2598.   DOI
58 Hill, R. D., Lahav, E. and Givol, D. 1974. A rennin-sensitive bond in ${\alpha}$s1 B-casein. J. Dairy Res. 41:147-153.   DOI
59 Honore, A. H., Aunsbjerg, S. D., Ebrahimi, P., Thorsen, M., Benfeldt, C., Knochel, S. and Skov, T. 2016. Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei. Anal. Bioanal. Chem. 408:83-96.   DOI
60 Kashket, E. R. 1987. Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol. Lett. 46:233-244.   DOI
61 Lahov, E. and Regelson, W. 1996. Antibacterial and immunostimulating casein-derived substances from milk: Casecidin, isracidin peptides. Food Chem. Toxicol. 34:131-145.   DOI
62 Larsen, B. and White, S. 1995. Antifungal effect of hydrogen peroxide on catalaseproducing strains of Candida spp. Infect. Dis. Obstet. Gynecol. 3:73-78.   DOI
63 Song, R., Shi, Q, Gninguue, A., Wei, R. and Luo, H. 2017. Purification and identification of a novel peptide derived from by-products fermentation of spiny head croaker (Collichthys lucidus) with antifungal effects on phytopathogens. Process Biochem. 62:184-192.   DOI
64 Schwenninger, S. M., Lacroix, C., Truttmann, S., Jans, C., Sporndli, C., Bigler, L. and Meile, L. 2008. Characterization of low-molecular-weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium coculture. J. Food Prot. 71:2481-2487.   DOI
65 Siedler, S., Balti, R. and Neves, A. R. 2019. Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr. Opin. Biotechnol. 56:138-146.   DOI
66 Sjogren, J., Magnusson, J., Broberg, A., Schnurer, J. and Kenne, L. 2003. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl. Environ. Microbiol. 69:7554-7557.   DOI
67 Stratford, M., Plumridge, A., Nebe-von-Caron, G. and Archer, D. B. 2009. Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory. Int. J. Food Microbiol. 136:37-43.   DOI
68 Strom, K., Sjogren, J., Broberg, A. and Schnurer, J. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo (L-Phetrans-4-OH-L-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol. 68:4322-4327.   DOI
69 Valerio, F., Lavermicocca, P., Pascale, M. and Visconti, A. 2004. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol. Lett. 233:289-295.   DOI