• Title/Summary/Keyword: natural oak forests

Search Result 29, Processing Time 0.026 seconds

Comparison of Mass and Nutrient Dynamics of Coarse Woody Debris between Quercus serrata and Q. variabilis Stands in Yangpyeong

  • Kim, RaeHyun;Son, Yowhan;Hwang, Jaehong
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.115-120
    • /
    • 2004
  • Coarse woody debris (CWD, $\ge$ 5 cm in maximum diameter) is an important functional component, especially to nutrient cycling in forest ecosystems. To compare mass and nutrient dynamics of CWD in natural oak forests, a two-year study was conducted at Quercus serrata and Q. variabilis stands in Yangpyeong, Kyonggi Province. Total CWD (snag, stump, log and large branch) and annual decomposition mass (Mg/ha) were 1.9 and 0.4 for the Q. serrata stand and 7.5 and 0.5 for the Q. variabilis stand, respectively. Snags covered 72% of total CWD mass for the Q. variabilis stand and 42% for the Q. serrata stand. Most of CWD was classified into decay class 1 for both stands. CWD N and P concentrations for the Q. variabilis stand significantly increased along decay class and sampling time, except for P concentration in 2002. There were no differences in CWD N concentration for the Q. serrata stand along decay class and sampling time. However, CWD P concentration decreased along sampling time. CWD N and P contents (kg/ha) ranged from 3.5∼4.7 and 0.8∼1.3 for the Q. serrata stand to 22.8∼23.6 and 3.7∼4.7 for the Q. variabilis stand. Nitrogen and P inputs (kg/ha/yr) into mineral soil through the CWD decomposition were 0.7 and 0.3 for the Q. serrata stand and 1.6 and 0.3 for the Q. variabilis stand, respectively. The number of CWD and decay rate were main factors influencing the difference in CWD mass and nutrient dynamics between both stands.

Syntaxonomical and Synecological Description on the Forest Vegetation of Juwangsan National Park, South Korea (주왕산국립공원 삼림식생의 군락분류와 군락생태)

  • Oh, Hae-Sung;Lee, Gyeong-Yeon;Kim, Jong-Won
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.118-131
    • /
    • 2018
  • The forest vegetation of Juwangsan National Park, which is famous for its towering scenic valleys, was syntaxonomically described. The study adopted the $Z{\ddot{u}}rich$-Montpellier School's method emphasizing a matching between species composition and habitat conditions. A combined cover degree and the r-NCD (relative net contribution degree) were used to determine a performance of 265 plant species listed-up in a total of 52 phytosociological $relev{\acute{e}}s$. Nine plant communities were classified through a series of table manipulations, and their distribution and actual homotoneity($H_{act}$) were analyzed. Syntaxa described were Carex gifuensis-Quercus mongolica community, Athyrium yokoscense-Quercus mongolica communiy, Arisaema amurense-Quercus serrata community, Lespedeza maximowiczii var. tomentella-Quercus variabilis community, Tilia rufa-Quercus dentata community, Carex ciliatomarginata-Carpinus laxiflora community, Aristolochia manshuriensis-Zelkova serrata community, Onoclea orientalis-Fraxinus mandshurica community, and Carex humilis var. nana-Pinus densiflora community. A zonal distribution was reviewed and the altitude of about 700 m was the transition zone between the cool-temperate central montane zone (Lindero-Quercenion mongolicae region) and southern submontane zone (Callicarpo-Quercenion serratae region). Only 19 taxa were associated with r-NCD 10% or more, most of which were tree species occurring in the Lindero-Quercenion and some of which was a member of open forests. Species composition of forest vegetation was much less homogeneous, showing the lowest $H_{act}$. Nearly natural forests and/or secondary forests in the Juwangsan National Park were defined as a regional vegetation type, which reflects much stronger continental climate in the Daegu regional bioclimatic subdistrict, rhyolitic tuff predominant, and wildfire interference.

The Butterfly Community Dynamics at Mt. Midong, Cheongwon-gun, Chungcheongbukdo, Korea (충청북도 청원군 미동산의 나비군집모니터링)

  • Kim, Do-Sung;Yi, Hoon-Bok;Kwon, Yong-Jung;Woo, Myeong-Suk
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.4
    • /
    • pp.319-325
    • /
    • 2007
  • We monitored the butterfly community dynamics from March to October for the three years (2002, 2003, 2004). The study areas were consisted of the five sectors with pine forest (Pinus rigida) and mixed oak forests at Mt. Midong in Chungwongun, Chungchungbukdo, Korea. We found that the total numbers of butterfly species were 59 species and the total individuals were 1,513. There was no change the number of species (44 species) during the study period but the composition of species and the number of individuals were different such as 414, 561, and 538, respectively. The most abundant species were Minois dryas (25%) in 2002, Polygonia c-aureum (24%) in 2003, and P. c-aureum (22%) in 2004. On the contrary, the number of singleton species was 20 species in 2002, 15 species in 2003, and 15 species in 2004. We found that there was the seasonal difference in species composition of butterfly community. The species diversity of butterfly community was the highest at sector 4 and sector 5 and lowest at sector 2. Main reason of the butterfly dynamics was strongly supposed to the human activity. We could suggest that the butterfly monitoring study must be a good way to measure the change of butterfly habitats including anthropogenic activity and the natural disturbances.

Effects of Elevated $CO_2$ Concentration and Temperature on Growth Response of Quercus acutissima and Q. variabilis (지구온난화에 따른 상수리나무와 굴참나무의 생육반응에 관한 연구)

  • Jeong, Jung-Kyu;Kim, Hae-Ran;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.648-656
    • /
    • 2010
  • Global warming brings changes of natural ecosystems and affects on the plant growth response. Quercus acutissima and Q. variabilis are taxonomically similar and dominant native species in deciduous forests in South Korea. In order to understand the growth response of Q. acutissima and Q. variabilis to global warming condition, we cultivated the seedling of the two oak species in ambient condition(control) and treatment with elevated $CO_2$(700~800ppm) and increased air temperature(approximately $3^{\circ}C$ above than control). Then we measured the growth characteristic among them and analyzed the relationship between two species using PCA ordination. Stem length and total plant weight of Q. acutissima were significantly affected by elevated $CO_2$ concentration and increased air temperature. Stem diameter and weight of Q. variabilis were significantly affected by elevated $CO_2$ concentration and increased air temperature(p<0.05). The variation characteristics of Q. acutissima were changed more than Q. variabilis by elevated $CO_2$ concentration and increased air temperature. These result suggested that Q. acutissima was more sensitive to global warming situation than Q. variabilis in central region of Korea. PCA ordination showed that two species were arranged by two distinct groups based on 10 characters by elevated $CO_2$ and increased air temperature.

Ecological Characteristics of Korean Red Pine (Pinus densiflora S. et Z.) Forest on Mt. Nam as a Long Term Ecological Research (LTER) Site (국가장기생태연구 장소로서 구축된 남산 소나무림의 생태적 특성)

  • Lee, Chang-Seok;Cho, Yong-Chan;Shin, Hyun-Cheol;Lee, Choong-Hwa;Lee, Seon-Mi;Seol, Eun-Sil;Oh, Woo-Seok;Park, Sung-Ae
    • Journal of Ecology and Environment
    • /
    • v.29 no.6
    • /
    • pp.593-602
    • /
    • 2006
  • Species composition, spatial distribution of major species, diameter and height classes distribution, and species diversity were .analyzed in the Korean red pine (Pinus densiflora, hereafter referred as pine) forest in the permanent quadrats, which were designed for Long Term Ecological Research (LTER). Collected data were compared with those from the other areas including urban center (Mt. Inwang and Hongneung) and boundary areas (Mts. Acha, Bukhan, Bulam, Cheonggye, Daemo, and Surak), and natural areas (Mts. Seolak, Songni, and Wolak) to clarify the ecological characteristics of pine forest on Mt. Nam. Species composition of pine forest on Mt. Nam showed a similarity with those of urban center but did a little and big differences with those on urban boundary and natural areas, respectively. Such differences that pine forest on Mt. Nam showed, were usually due to Styrax japonicus, Sorbus alnifolia, Oplismenus undulatifolius, Ailanthus altissima, Ageratina altissima and so on, which showed higher coverage there. Predicted from diameter and height classes distribution of tree species, pine forest on Mt. Nam showed a possibility to be replaced by a S. japonica. Considered that this replacer species is not only a sub-tree but also shade intolerant, such successional trend could be interpreted as a sort of retrogressive succession. Those on urban boundary and natural areas showed a difference by displaying probabilities to be maintained as themselves as an edaphic climax or succeeded to oak forests. Species diversity of pine forest on Mt. Nam was lower than those in urban boundary and natural areas due to excessive dominance of several species, which led to different species composition from the other areas. Plants, which produced the differences, were species that flourishes in the polluted industrial area (S. japonica and S. alnifolia), favors the disturbed site (O. undulatifolius), and exotic species (A. altissima and Eupatorium rugosum). Those results reflects that pine forest of Mt. Nam was exposed on severe environmental pollution and excessive human interferences.

A Study on the Gwanbang forest of Ganghwa in the Joseon Dynasty Period (조선시대 강화지역 관방림(關防林)의 특성 연구)

  • Shim, Sun-Hui;Lee Jae-Yong;Kim, Choong-Sik
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.35-46
    • /
    • 2023
  • This study investigated and analyzed ancient records on the type, planting background, and construction process of Gwanbang forest(關防林) planned for military defense during the Joseon Dynasty to find out the purpose, location, and planting species of Gwanbang forest. The research results were as follows. During the Joseon Dynasty, Gwanbang forests were created around various government facilities(關防施設), such as Eupseong(邑城), major government offices, camps, and fortifications, for the purpose of defending against enemies. Gwanbang forest includes Yeongaeglim(嶺阨林), which was created on the crest of a strategically important hill, and Military Forest created for military purposes. Most of the spirit forest was designated as Geumsan(禁山) and protected and managed, and the Gwanbang forest was created for various purposes such as shielding, flood damage and river bank erosion prevention as well as external defense. In addition, in order to continuously and efficiently produce wood, which is a material for ships, buildings, and agricultural tools, in most cases, large areas were created as mixed forests. As for the species constituting the Gwanbang forest, there are records of tangerine tree, which is effective for defense because it has thorns, and deciduous broad-leaved trees such as zelkova, elm, willow, david hemiptelea, and oak appear. In the case of Ganghwa island, which served as the defense of the capital and the royal family during the Joseon Dynasty, several records have confirmed that a forest densely planted with trifoliate orange was created for the purpose of Gwanbang forest to reinforce the defense of the outer fortress. Based on historical research in the literature, assuming that the natural monument 'Gapgotri tangerine tree in Ganghwa Island' was planted in the 30th year of King Sukjong(1704), the first record of planting trifoliate orange in Ganghwa Island, the maximum age is estimated to be more than 319 years.

Estimation of Forest Productivity for Post-Wild-fire Restoration in East Coastal Areas (동해안 산불피해지 복구를 위한 산림생산력의 추정)

  • Koo, Kyo-Sang;Lee, Myung-Jong;Shin, Man-Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.36-44
    • /
    • 2010
  • In order to rehabilitate forest sites damaged by wildfire via natural or artificial restoration, it is important to determine right tree species, which can acclimate to biogeoclimatic environment at the sites. The objectives of this study were to develop site index equation of different tree species for estimating forest productivity and to provide information on species selection for post-wildfire restoration. Site index equation was developed based on environmental information from wildfire damaged areas in Gangneung, Goseong, Donghae, and Samcheok, where were located in east coastal areas of South Korea. Despite the small numbers (4~5) of environmental variables used for the development of the site index equations, statistical analysis (e.g. mean difference, standard deviation of difference, and standard error of difference) showed relatively low bias and variation, suggesting that those equations can provide relatively high capability of estimation and practical applicability with high effectiveness. The small numbers of the variables enabled the model to be applied in a wide range of usages including determination of appropriate tree species for post-wildfire restoration. The estimation of forest site productivity showed the possibility of large distribution in east coastal region as the best site for Korean ash (Fraxinus rhynchophylla) and original oak (Quercus variabilis) that can be used for firebreak in the region. These results imply that damages by forest fire can be reduced significantly by replacing existing pure coniferous forests in the area with ones dominated by broad-leaved deciduous stands, which can play an important role as fire break and/or prevent a transition from surface fire to crown fire.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF

A Study on Forestation for Landscaping around the Lakes in the Upper Watersheds of North Han River (북한강상류수계(北漢江上流水系)의 호수단지주변삼림(湖水団地周辺森林)의 풍경적시업(風景的施業)에 관(関)한 연구(硏究))

  • Ho, Ul Yeong
    • Journal of Korean Society of Forest Science
    • /
    • v.54 no.1
    • /
    • pp.1-24
    • /
    • 1981
  • Kangweon-Do is rich in sightseeing resources. There are three sightseeing areas;first, mountain area including Seolak and Ohdae National Parks, and chiak Provincial Park; second eastern coastal area; third lake area including the watersheds of North Han River. In this paper, several methods of forestation were studied for landscaping the North Han River watersheds centering around Chounchon. In Chunchon lake complex, there are four lakes; Uiam, Chunchon, Soyang and Paro from down to upper stream. The total surface area of the above four lakes is $14.4km^2$ the total pondage of them 4,155 million $m^3$, the total generation of electric power of them 410 thousand Kw, and the total forest area bordering on them $1,208km^2$. The bordering forest consists of planned management forest ($745km^2$) and non-planned management forest ($463km^2$). The latter is divided into green belt zone, natural conservation area, and protection forest. The forest in green belt amounts to $177km^2$ and centers around the 10km radios from Chunchon. The forest in natural conservation area amounts to $165km^2$, which is established within 2km sight range from the Soyang-lake sides. Protection forest surrounding the lakes is $121km^2$ There are many scenic places, recreation gardens, cultural goods and ruins in this lake complex, which are the same good tourist resources as lakes and forest. The forest encirelng the lakes has the poor average growing stock of $15m^3/ha$, because 70% of the forest consists of the young plantation of 1 to 2 age class. The ration of the needle-leaved forest, the broad-leaved forest and the mixed forest in 35:37:28. From the standpoint of ownership, the forest consists of national forest (36%), provincial forest (14%), Gun forest (5%) and private forest(45%). The greater part of the forest soil, originated from granite and gneiss, is much liable to weathering. Because the surface soil is mostly sterile, the fertilization for improving the soil quality is strongly urged. Considering the above-mentioned, the forestation methods for improving landscape of the North Han River Watersheds are suggested as follows: 1) The mature-stage forest should be induced by means of fertilizing and tendering, as the forest in this area is the young plantation with poor soil. 2) The bare land should be afforested by planting the rapid growing species, such as rigida pine, alder, and etc. 3) The bare land in the canyon with moderate moist and comparatively rich soil should be planted with Korean-pine, larch, ro fir. 4) Japaness-pine stand should be changed into Korean-pine, fir, spruce or hemlock stand from ravine to top gradually, because the Japanese-pine has poor capacity of water conservation and great liability to pine gall midge. 5) Present hard-wood forest, consisting of miscellaneous trees comparatively less valuable from the point of wood quality and scenerity, should be change into oak, maple, fraxinus-rhynchophylla, birch or juglan stand which is comparatively more valuable. 6) In the mountain foot within the sight-range, stands should be established with such species as cherry, weeping willow, white poplar, machilus, maiden-hair tree, juniper, chestnut or apricot. 7) The regeneration of some broad-leaved forests should be induced to the middle forest type, leading to the harmonious arrangement of the two storied forest and the coppice. 8) For the preservation of scenery, the reproduction of the soft-wood forest should be done under the selection method or the shelter-wood system. 9) Mixed forest should be regenerated under the middle forest system with upper needle-leaved forest and lower broad-leaved forest. In brief, the nature's mysteriousness should be conserved by combining the womanly elegance of the lakes and the manly grandeur of the forest.

  • PDF