• 제목/요약/키워드: natural gas engine

검색결과 241건 처리시간 0.027초

디젤기관 추진축계의 연성진동에 관한 연구 (제2보: 강제 감쇠 연성진동 해석) (Studies on Coupled Vibrations of Diesel Engine Propulsion Shafting (2nd Report : Analyzing of Forced Vibration with Damping))

  • 이돈출;김의간;전효중
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 추계학술대회 논문집(Proceeding of the KOSME 2000 Autumn Annual Meeting)
    • /
    • pp.99-107
    • /
    • 2000
  • With the results of calculation for natural frequencies, the forced reponses of coupled vibration of propulsion shafting were analysed by the modal analysis method. For the forced response analysis, axial exciting forces, axial damper/detuner, propeller exciting forces and damping coefficients were extensively investigated. As the conclusion of this study, some items are cleared as next. - The torsional amplitudes are not influenced by the radial excitation forces. - The axial vibrational amplitudes are influenced by the tangential exciting forces. An increase of amplitude is observed for the speed range in the neighbourhood of any torsional critical speed. - The coupling effect becomes larger if torsional and axial critical speed are closer together. - The axial exciting force of propeller is relatively strong, comparing with those of axial forces of cylinder gas pressure and oscillating inertia of reciprocating mechanism. Therefore, as a resume one can say, that- Torsional vibration calculation with the classical one dimension model is still valid. - The influence of torsional excitation at each crank upon the axial vibration is impotent, especially in the neighbourhood of a torsional critical speed. That means that the calculation of axial vibration with the classical one dimension model is insufficient in most of cases. - The torsional exciting torque of propeller can be neglected in most of cases. But, the axial exciting forces of propeller can not be neglected for calculating axial vibration of propulsion shafting.

  • PDF

IMO Type C LNG 저장 탱크의 단열성능 및 구조적 건전성 평가 (Evaluation of Insulation Performance and Structural Integrity of an IMO Type C LNG Storage Tank)

  • 박희우;박진성;조종래
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.1-7
    • /
    • 2021
  • Restrictions on the emissions of nitrogen oxides, sulfur oxides, carbon dioxide, and particulate matter from marine engines are being tightened. Each of these emissions requires different reduction technologies, which are costly and require many pieces of equipment to meet the requirements. Liquefied natural gas (LNG) fuel has a great advantage in reducing harmful emissions emitted from ships. Therefore, the marine engine application of LNG fuel is significantly increasing in new ship buildings. Accordingly, this study analyzed the internal support structure, insulation type, and fuel supply piping system of a 35 m3 International Maritime Organization C type pressurized storage tank of an LNG-fueled ship. Analysis of the heat transfer characteristics revealed that A304L stainless steel has a lower heat flux than A553 nickel steel, but the effect is not significant. The heat flux of pearlite insulation is much lower than that of vacuum insulation. Moreover, the analysis results of the constraint method of the support ring showed no significant difference. A553 steel containing 9% nickel has a higher strength and lower coefficient of thermal expansion than A304L, making it a suitable material for cryogenic containers.

질소분사 음향시험을 통한 충돌형(FOOF) 분사기의 안정성 평가에 관한 연구 (Study on the Stability Test of Impinging(FOOF) Injector on $GN_2$ Purge Cold Flow Test)

  • 유덕근;이광진;서성현;한영민;최환석;설우석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.135-140
    • /
    • 2006
  • 충돌형(FOOF) 분사기의 불안정 영역을 결정하기 위해 질소분사 음향시험을 수행하였다. 파이프와 오리피스 형상을 가지는 분사기 내 산화제 부분에서 유동속도에 비례하고, 비정상적으로 jumping하는 특정 주파수를 가지는 whistling이 발생한다. 동일한 조건의 연소시험과 비교해 본 결과 whistling 현상은 연소현상에는 영향을 주지 않는다. 질소분사 음향시험과 연소시험에서 얻은 연소실 내 1T1L mode의 damping factor를 비교하여 불안정 영역을 구해보면, 비슷한 조건에서 불안정 영역을 가진다. 이것은 유동의 충돌, 혼합에 의한 유동불안정 현상이 연소시험에서 연소불안정을 발생시키는 주요한 인자임을 의미 한다.

  • PDF

국내휘발유 승용차량으로부터의 N2O배출인자 특성연구 (Characteristics of N2O Emission Factor and Measurements from Gasoline-Powered Passenger Vehicles)

  • 김득수;류정호;유영숙;정성운;김대욱
    • 한국환경과학회지
    • /
    • 제16권2호
    • /
    • pp.179-185
    • /
    • 2007
  • Nitrous oxide ($N_2O$) is an important trace gas in the atmosphere not only because of its large global warming potential (GWP) but also because of the role in the ozone depletion in the stratosphere. It has been known that soil is the largest natural source of $N_2O$ in global emission. However, anthropogenic sources contributing from industrial section is likely to increase with rising the energy consumption, and transportation as well. In this study, a total of 32 gasoline-powered passenger vehicles (ranging from small to large engine's displacement and also ranging from aged catalyst to new catalyst) were tested on the chassis dynamometer system in order to elucidate the characteristics of $N_2O$ emission from automobiles under different driving modes. Ten different driving modes developed by NIER were adapted for the test. The results show that the $N_2O$ emission decreases logarithmically with increase of vehicle speed over the all test vehicles ($N_2O$) emission = -0.062 Ln (vehicle speed) + $0.289,\;r^2=0.97$). It revealed that the larger engine's displacement, the more $N_2O$ emission were recorded. The correlation between $N_2O$ emission and catalyst aging was examined. It found that the vehicles with aged catalyst (odometer record more than 8,0000km) emit more $N_2O$ than those with new catalyst. Average $N_2O$ emission was $0.086{\pm}0.095\;N_2O-g/km$ (number of samples=210) for the all test vehicles over the test driving modes.

금속-유기 골격체를 이용한 CO2/CH4 분리: 플렉서블 효과와 강한 흡착 사이트 비교 연구 (CO2/CH4 Separation in Metal-organic Frameworks: Flexibility or Open Metal Sites?)

  • 정민지;오현철
    • 멤브레인
    • /
    • 제28권2호
    • /
    • pp.136-141
    • /
    • 2018
  • 이산화탄소($CO_2$)는 천연 가스, 바이오 가스, 매립 가스의 성분으로 존재할 뿐만 아니라 화석연료의 주요 연소 생성물로써 온실 가스의 주범이다. 특히 내연기관의 연료 고효율을 얻고, 가스 수송시스템의 부식을 방지하며, 기후변화에 선제적으로 대응하기 위해서는 이산화탄소($CO_2$)의 저감 또는 제거 기술이 필수적이다. 지난 수십 년간, 멤브레인 기반 기술의 구성 및 설계 단순성에 의하여 관련 연구가 많이 이루어져 왔으며 많은 발전을 이루었다. 최근 들어, 기존 멤브레인 기반 분리 뿐만 아니라, 새로운 흡착제 기반 분리 기술 등에 대한 관심도 높아지고 있다. 특히, 최근 각광받고 있는 유기-금속 골격체(Metal Organic Frameworks, MOFs)의 경우, 일반 다공질 흡착제와는 다른 독특한 성질(Flexibility, Gating effect 또는 Open Metal Sites 등)로 인하여, 이를 활용한 다양한 기체 분리 연구가 늘어나고 있는 추세이다. 따라서 본 연구에서는 대표적 플렉서블한 물질인 MIL-53(Al)과 강한 결합에너지 site를 다수 보유한 대표적 MOF 물질인 MOF-74(Ni)를 활용하여 온도 및 압력에 따른 이산화탄소 메탄 분리 성능 비교 분석하였으며, 각 물질의 특성별 압력 및 온도에 따라 변화하는 적정 분리 구간을 제시하였다.

시간지연 모델을 이용한 액체로켓엔진의 축방향 비선형 연소불안정 해석 (Numerical Analysis of Nonlinear Longitudinal Combustion Instability in LRE Using Pressure-Sensitive Time-Lag Hypothesis)

  • 김성구;최환석;박태선;김용모
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.281-287
    • /
    • 2005
  • 연소불안정에서 흔히 수반되는 충격파와 한계사이클 같은 비선형적 거동을 수치해석을 통해 고찰하였다. 공진관에 가해진 초기 압력교란이 충격파로 천이되는 과정을 해석함으로서 비선형 음향특성에 대한 이해를 돕는 동시에 수치해석기법의 정확성을 검증하였다. ${\eta}-{\tau}$ 연소응답모델을 이용한 SSME의 해석결과는 선형불안정 영역에서 한계사이클의 특성은 연소파라미터와 작동조건에 의존할 뿐 초기 교란의 특성과는 무관함을 밝혔다. 또한 1.5 MW급 가스발생기의 개발 과정에서 겪은 연소불안정 문제에 적용하여 예측된 안정성 경향을 연소시험 결과와 비교함으로서, 향후 수치해석을 통한 연소불안정 예측기법에 대해 가능성을 확인하는 동시에 향후 연구방향을 모색하였다.

  • PDF

DME를 이용한 경유자동차의 유해대기오염물질 발생 특성 연구 (A Study on Hazardous Air Pollutant Emissions From Diesel Engines Utilizing DME Fuel)

  • 임윤성;서충열;곽순철;이종태;박정민;강대일;김종춘;이영재;표영덕;임의순;동종인
    • 한국대기환경학회지
    • /
    • 제22권1호
    • /
    • pp.53-61
    • /
    • 2006
  • Recently, lots of researchers have been attracted to develop various alternative fuels and to use renewable fuels in order to solve the exhaust emission problems. DME (Dimethylether) is synthetic fuel, and can be produced from natural gas, coal and biomass. The emission is clean because it contains little sulfur and aromatic components In this study, the fuel was tested to investigate the applicability as an alternative fuel for diesel. This study was carried out by comparing the exhaust emissions and performance of diesel engine with DME, ULSD (ultra low sulfur diesel), LSD (low sulfur diesel) respectively. In order to measure regulated emissions, CO, $NO_{3}$, HC from vehicle different fuel types were used on chassis dynamometer CVS (constant volume sampler)-75 mode and EPA TO-I1A method was chosen for aldehydes analysis.

50kW급 로켓 엔진용 전기펌프 모터의 개념 설계 (Conceptual Design of Electric-Pump Motor for 50kW Rocket Engine)

  • 김홍교;곽현덕;최창호;김정
    • 한국항공우주학회지
    • /
    • 제46권2호
    • /
    • pp.175-181
    • /
    • 2018
  • 전기펌프시스템은 기존 터보펌프의 가스발생기, 구동기 및 터빈이 필요 없는 매우 간결한 구조를 갖고 있어 저가 소형 위성 발사체의 차세대 추진기관으로써 최근 주목받고 있다. 그래서 본 논문에서는 로켓엔진용 전기펌프 시스템의 가장 중요한 핵심부품인 영구자석 동기모터(PMSM)의 개발 및 발사체로의 적용 가능성을 파악하기 위하여 50 kW, 50,000 RPM의 성능을 가지는 전기모터에 대한 개념설계안을 도출하였다. 요구되는 전기모터의 성능을 만족시키기 위해서 전자기장해석을 수행하여 모터의 전체 외경과 회전자의 내경을 결정하였으며, 회전자는 4,000 가우스의 Sm2Co17 원통형 자석을 이용하여 Inconel 718 재료의 캔으로 체결하였다. 또한, 엔진구동시 모터 운전 영역에서의 회전 동역학적 안정성을 검증하기 위해서 회전체 동역학해석을 수행하였으며, Campbell 선도를 통하여 설계한 모터의 단품운전 뿐만 아니라 성능확인을 위한 Dynamo meter 운전 시에도 공진현상이 발생하지 않음을 해석적으로 확인할 수 있었다.

공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰- (Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 -)

  • 최영돈;강용태;김내현;김만회;박경근;박병윤;박진철;홍희기
    • 설비공학논문집
    • /
    • 제19권1호
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

Investigation of Applying Technical Measures for Improving Energy Efficiency Design Index (EEDI) for KCS and KVLCC2

  • Jun-Yup Park;Jong-Yeon Jung;Yu-Taek Seo
    • 한국해양공학회지
    • /
    • 제37권2호
    • /
    • pp.58-67
    • /
    • 2023
  • While extensive research is being conducted to reduce greenhouse gases in industrial fields, the International Maritime Organization (IMO) has implemented regulations to actively reduce CO2 emissions from ships, such as energy efficiency design index (EEDI), energy efficiency existing ship index (EEXI), energy efficiency operational indicator (EEOI), and carbon intensity indicator (CII). These regulations play an important role for the design and operation of ships. However, the calculation of the index and indicator might be complex depending on the types and size of the ship. Here, to calculate the EEDI of two target vessels, first, the ships were set as Deadweight (DWT) 50K container and 300K very large crude-oil carrier (VLCC) considering the type and size of those ships along with the engine types and power. Equations and parameters from the marine pollution treaty (MARPOL) Annex VI, IMO marine environment protection committee (MEPC) resolution were used to estimate the EEDI and their changes. Technical measures were subsequently applied to satisfy the IMO regulations, such as reducing speed, energy saving devices (ESD), and onboard CO2 capture system. Process simulation model using Aspen Plus v10 was developed for the onboard CO2 capture system. The obtained results suggested that the fuel change from Marine diesel oil (MDO) to liquefied natural gas (LNG) was the most effective way to reduce EEDI, considering the limited supply of the alternative clean fuels. Decreasing ship speed was the next effective option to meet the regulation until Phase 4. In case of container, the attained EEDI while converting fuel from Diesel oil (DO) to LNG was reduced by 27.35%. With speed reduction, the EEDI was improved by 21.76% of the EEDI based on DO. Pertaining to VLCC, 27.31% and 22.10% improvements were observed, which were comparable to those for the container. However, for both vessels, additional measure is required to meet Phase 5, demanding the reduction of 70%. Therefore, onboard CO2 capture system was designed for both KCS (Korea Research Institute of Ships & Ocean Engineering (KRISO) container ship) and KVLCC2 (KRISO VLCC) to meet the Phase 5 standard in the process simulation. The absorber column was designed with a diameter of 1.2-3.5 m and height of 11.3 m. The stripper column was 0.6-1.5 m in diameter and 8.8-9.6 m in height. The obtained results suggested that a combination of ESD, speed reduction, and fuel change was effective for reducing the EEDI; and onboard CO2 capture system may be required for Phase 5.