• Title/Summary/Keyword: natural fiber composites

Search Result 130, Processing Time 0.03 seconds

Effect of Natural Jute Fiber on Bond between Polyolefin Based Macro Fiber and Cement Matrix (폴리올레핀계 매크로 섬유와 시멘트 경화체의 부착특성에 미치는 천연마섬유의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.251-260
    • /
    • 2011
  • In this study, the effect of natural jute fiber volume fraction on the bond characteristics of polyolefin based macro fiber in natural jute fiber reinforced cement composites, including bond strength, interface toughness, and microstructure analysis are presented. The experimental results on polyolefin based macro fiber pullout test of different conditions are reported. Natural jute fiber volume fractions ranging from 0.1% to 0.2% are used in the mix proportions. Pullout tests are conducted to measure the bond characteristics of polyolefin based macro fiber from natural jute fiber reinforced cement composites. Test results are found that the incorporation of natural jute fiber can effectively enhance the polyolefin based macro fiber-cement matrix interfacial properties. The bond strength and interface toughness between polyolefin based macro fiber and natural jute fiber reinforced cement composites increases with the volume fraction of natural jute fiber. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results.

Experimental investigation on thermal behavior, sound absorption, and flammability of natural fibre polymer composites

  • Ravi Kumar, B.;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.613-618
    • /
    • 2020
  • Exhausting oil resources and increasing pollution around the world are forcing researchers to look for new, renewable, biodegradable materials to lead sustainable development. The use of fiber reinforced composites based on natural fibres has increasingly begun as prospective materials for various engineering applications in the automotive, rail, construction and aerospace industries. The natural fiber chosen to make the composite material is plant-based fibre, e.g. jute fibre, and hemp fibre. Thermosetting polymer based Epoxy (LY556) was utilized as matrix material and The composites were produced using hand lay-up technique. The fabricated composites were tested for acoustic testing, thermo-gravimetric analysis (TGA) and flammability testing to asses sound absorption, thermal decomposition and fire resistivity of the structures. Hemp fibre composites have shown improved thermal stability over Jute fibre composites. However, the fire resistance characteristics of jute fibre composites are better as compared to hemp fibre composites. The sound absorption coefficient of composites was found to enhance with the increase of frequency.

Structural Test Analysis Study for Manufacturing of Flax Fiber Composite Blades for 30kW Wind Turbines (30kW 풍력터빈용 아마섬유 복합재 블레이드 제조를 위한 구조 시험 분석 연구)

  • Hye-Jin Shin;Ji-Hyun Lee;Sung-Young Moon;Jounghwan Lee
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.32-36
    • /
    • 2023
  • Recently, as global environmental issues for sustainable development, such as carbon neutrality, have emerged, disposal methods of glass fiber composites, a material of existing wind turbines, have become a problem. To solve this problem, in this study, 30kW wind turbine blades were manufactured using flax fiber-based composites, which are eco-friendly natural fiber composites that can replace existing glass fiber composites, and their suitability was evaluated. First, mechanical strength tests were conducted to verify the feasibility of using eco-friendly natural flax fiber composites as a wind turbine blade material, and as a result, better strength were confirmed compared to previous studies on the properties of flax fiber composites. In addition, the suitability was confirmed through a static strength performance evaluation test to measure the static strength of the flax fiber composite blade using the manufactured 30kW class flax fiber composite blade.

Recent Developments in Natural Fiber Reinforced Composites (천연섬유보강 복합재료의 최근 연구 개발)

  • Mirza, Foisal Ahmed;Afsar, Ali Md.;Kim, Byung-Sun;Song, Jong-Il
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2009
  • Natural fiber reinforced composites are emerging as low-cost, lightweight, recyclable, and eco-friendly materials. These are biodegradable and non-abrasive. Due to eco-friendly and biodegradable characteristics of natural fibers, they are being considered as potential candidates to replace the conventional fibers. The chemical, mechanical, and physical properties of natural fibers have distinct features depending upon the cellulose content of the fibers which varies from fiber to fiber. The mechanical properties of composites are influenced mainly by the adhesion between matrix and fibers. Several chemical and physical modification methods of fiber surface were incorporated to improve the tiber-matrix adhesion resulting in the enhancement of mechanical properties of the composites. This paper outlines the works reported on natural tiber reinforced composites with special reference to the type of fibers, polymer matrix, processing techniques, treatment of fibers, and fiber-matrix interface.

Trends and Perspective for Eco-friendly Composites for Next-generation Automobiles (차세대 자동차용 친환경 복합재료의 동향 및 전망)

  • Eunyoung Oh;Marcela Maria Godoy Zuniga;Jonghwan Suhr
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • As global issues and interest in the environment increase, the transition to eco-friendly materials is accelerating in the automobile industry. In the automotive industry, eco-friendly composite materials are mainly used in various interior and exterior components, reducing the reliance on traditional petroleum-based materials. In particular, natural fiber composites help reduce fuel consumption and greenhouse gas emissions by making vehicles lighter. Additionally, they boast superior thermal properties and durability compared to non-recyclable composite materials, making them suitable for automotive interior parts. Furthermore, reduced production costs and sustainability are key advantages of natural fiber composites. The eco-friendly composites market is expected to grow to $86.43 billion at a CAGR of 15.3% from 2022 to 2030, and the natural fiber composites market is predicted to grow at a CAGR of 5.3% from 2023 to 2028 to $424 million. In this review paper, we explore research trends in nextgeneration natural fiber composite materials for automobiles and their application in the actual automobile industry.

Effective Material Properties of Composite Materials by Using a Numerical Homogenization Approach (균질화 접근법을 통한 복합재의 유효물성치 계산)

  • Anto, Anik Das;Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.28-37
    • /
    • 2019
  • Due to their flexible tailoring qualities, composites have become fascinating materials for structural engineers. While the research area of fiber-reinforced composite materials was previously limited to synthetic materials, natural fibers have recently become the primary research focus as the best alternative to artificial fibers. The natural fibers are eco-friendly and relatively cheaper than synthetic fibers. The main concern of current research into natural fiber-reinforced composites is the prediction and enhancement of the effective material properties. In the present work, finite element analysis is used with a numerical homogenization approach to determine the effective material properties of jute fiber-reinforced epoxy composites with various volume fractions of fiber. The finite element analysis results for the jute fiber-reinforced epoxy composite are then compared with several well-known analytical models.

Parametric Study for Hole Machining in Natural Fiber Composites (천연섬유 복합재료의 홀 가공을 위한 파라메트릭 연구)

  • Lee, Dong-Woo;Oh, Jung-Suck;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • In this study, natural fiber composites including flax fiber reinforcement was manufactured. It was tried to find optimum design of drill and machining factor for minimizing the damage during hole machining in natural fiber composites. Taguchi optimization was used for minimizing the number of experiments and evaluation of the effect of machining factor during hole machining in natural fiber composites. The experimental results indicate that the newly designed drill distributes cutting resistance well and minimizes surface roughness and produces fine surfaces. Developed new drill has been dispersed in the cutting resistance during processing, it was possible to obtain the smooth hole surface. Also, it was found that optimal rotational speed and feed rate of drill for hole machining.

Mechanical Properties of Natural Fiber Composites by Co-polymerized Thermoplastics (공중합된 열가소성 수지에 의한 자연섬유 복합재의 기계적 물성에 관한 연구)

  • Lee, Jung-Hoon;Hwang, Byung-Sun;Byun, Joon-Hyung;Kim, Byung-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.116-120
    • /
    • 2005
  • In this study, composites with polypropylene(PP) and Jute fiber were prepared by compression molding technique. Generally, hydrophilic jute fibers do not adhere well to PP, which is hydrophobic. Maleic anhydride grafted polypropylene(MAPP) had been widely used as a coupling agent to improve the bonding between ligno-cellulosic fibers and PP. The coupling agent improved the tensile and flexural properties when the mechanical properties were tested by using a UTM. The mechanical properties of natural fiber composites(NFCs) by modified thermoplastics were higher than those of NFCs by unmodified thermoplastics. Fracture surfaces of the composites and the fiber orientations were investigated by scanning electron microscopy. The mechanical performance of NFCs by modified thermoplastics appeared to be improved by the enhanced interface adhesion between the fiber and the matrix.

  • PDF

Effect of Kenaf Fiber Content and Length on the Cure Characteristic, Hardness, Tensile Modulus, and Abrasion of Kenaf/Natural Rubber Composites in the Presence and Absence of Kenaf Fiber Treatment with Adhesive Solution (접착용액을 이용한 케나프섬유 처리 유·무에 따른 케나프/천연고무 복합재료의 경화특성, 경도, 인장탄성률 및 마모에 미치는 케나프섬유의 함량 및 길이의 영향)

  • Cho, Yi-Seok;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.19 no.2
    • /
    • pp.60-67
    • /
    • 2018
  • In the present study, when the surface of kenaf, which is an environmentally friendly natural fiber, was treated by using adhesive solution containing Chemlok 402, the effects of fiber surface treatment, fiber content and fiber length on the cure characteristics, hardness, tensile modulus and abrasion resistance of kenaf/natural rubber composites were investigated. The kenaf fiber contents consisting of the composites were varied with 0, 5, 10, 15, and 29 phr at a fixed fiber length of 2 mm and also the fiber length was varied with 2, 35, and 70 mm at a fixed fiber content of 5 phr. The Tmax and tc90 values, Shore A hardness, tensile modulus, and abrasion resistance of natural rubber composites strongly depended on the kenaf fiber content and length. The characteristics of the composite with kenaf fibers treated with the adhesive solution containing Chemlok 402 were higher than those untreated. This is ascribed to the improved interfacial adhesion between the treated kenaf fiber and the rubber matrix. This study suggests that an appropriate use of adhesive solution may be possible to increase the properties of natural fiber-reinforced composites.