DOI QR코드

DOI QR Code

Effect of Kenaf Fiber Content and Length on the Cure Characteristic, Hardness, Tensile Modulus, and Abrasion of Kenaf/Natural Rubber Composites in the Presence and Absence of Kenaf Fiber Treatment with Adhesive Solution

접착용액을 이용한 케나프섬유 처리 유·무에 따른 케나프/천연고무 복합재료의 경화특성, 경도, 인장탄성률 및 마모에 미치는 케나프섬유의 함량 및 길이의 영향

  • Cho, Yi-Seok (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Cho, Donghwan (Semyung Industrial Co., Ltd)
  • Received : 2018.03.03
  • Accepted : 2018.06.13
  • Published : 2018.06.29

Abstract

In the present study, when the surface of kenaf, which is an environmentally friendly natural fiber, was treated by using adhesive solution containing Chemlok 402, the effects of fiber surface treatment, fiber content and fiber length on the cure characteristics, hardness, tensile modulus and abrasion resistance of kenaf/natural rubber composites were investigated. The kenaf fiber contents consisting of the composites were varied with 0, 5, 10, 15, and 29 phr at a fixed fiber length of 2 mm and also the fiber length was varied with 2, 35, and 70 mm at a fixed fiber content of 5 phr. The Tmax and tc90 values, Shore A hardness, tensile modulus, and abrasion resistance of natural rubber composites strongly depended on the kenaf fiber content and length. The characteristics of the composite with kenaf fibers treated with the adhesive solution containing Chemlok 402 were higher than those untreated. This is ascribed to the improved interfacial adhesion between the treated kenaf fiber and the rubber matrix. This study suggests that an appropriate use of adhesive solution may be possible to increase the properties of natural fiber-reinforced composites.

본 연구에서는 친환경 천연섬유인 케나프의 표면을 Chemlok 402를 함유하고 있는 접착용액으로 전처리하였을 경우, 케나프/천연고무 복합재료의 경화거동, 경도, 인장특성 그리고 마모특성에 미치는 섬유 표면처리 유 무, 섬유함량 및 섬유길이의 영향을 조사하였다. 복합재료를 구성하는 케나프섬유 함량은 평균 케나프섬유의 길이가 약 2 mm로 일정한 상태에서 각각 0, 5, 10, 15, 20 phr로 달리하였다. 또한 섬유함량이 5 phr로 고정된 상태에서 평균 섬유길이는 각각 2 mm, 35 mm, 70 mm로 달리하여 각 특성을 비교하였다. 천연고무 복합재료의 경화거동을 나타내는 Tmax 값과 tc90 값, Shore A 경도, 인장탄성률 그리고 마모저항성은 케나프섬유 함량과 길이에 크게 의존하였다. 이러한 특성들은 케나프섬유의 표면을 접착용액으로 전처리한 경우가 처리하지 않은 경우보다 더 우수한 특성을 나타냈다. 이러한 현상은 전처리된 케나프섬유와 고무매트릭스 사이의 계면접착 상태가 개선되었기 때문이다. 본 연구결과는 천연섬유강화 복합재료의 물성을 향상시키기 위해 접착용액의 적절한 사용이 가능하다는 것을 제시하여 준다.

Keywords

References

  1. D. Cho, S. G. Lee, W. H. Park, and S. O. Han, Polym. Sci. Technol, 13, 460, (2002).
  2. D. Cho and H.-J. Kim, Elast. Compos., 44, 13, (2009).
  3. J. Mussig (Ed.), "Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications", John Wiley & Sons, Chippenham (2010).
  4. J. Gassan and A. Bledzki, Polym. Compos., 20, 62, (1999). https://doi.org/10.1002/pc.10335
  5. S. S. Tripathy, G. Levita, and D. Landro, Compos. Sci. Technol., 22, 815, (2001).
  6. D. Cho, H. S. Lee, S. O. Han, and L. T. Drzal, Adv. Compos. Mater., 16, 315, (2007). https://doi.org/10.1163/156855107782325159
  7. D. Cho, H. S. Lee, and S. O. Han, Compos. Interf., 16, 711, (2009). https://doi.org/10.1163/092764409X12477427307537
  8. S. M. Lee, D. Cho, W. H. Park, S. G. Lee, S. O. Han, and L. T. Drzal, Compos. Sci. Technol., 65, 647, (2005). https://doi.org/10.1016/j.compscitech.2004.09.023
  9. J. M. Seo, D. Cho, W. H. Park, S. O. Han, T. W. Hwang, C. H. Choi, and S. J. Jung, J. Biobased Mater. Bioenerg., 1, 331, (2007). https://doi.org/10.1166/jbmb.2007.007
  10. L. Liu, J. Yu, L. Cheng, and X. Yang, Polym. Degrad. Stabil., 94, 90, (2009). https://doi.org/10.1016/j.polymdegradstab.2008.10.013
  11. V. G. Geethamma, G. Kalaprasad, G. Groeninckx, and S. Thomas, Composites Part A: Appl. Sci. Manufac., 36, 1499, (2005). https://doi.org/10.1016/j.compositesa.2005.03.004
  12. Y. Ruksakulpiwat, J. Sridee, N. Suppakarn, and W. Sutapun, Composites Part B: Engineering, 40, 619, (2009). https://doi.org/10.1016/j.compositesb.2009.04.006
  13. Y.-S. Cho and D. Cho, Elast. Compos., 46, 186, (2011).
  14. A. N. Gent, "Engineering with Rubber", Hanser Publishers, Munich, Chapter 2 (1992).
  15. M. Morton, "Rubber Technology", 3rd Ed., Van Nostrand Rhinhold, New York, Chapter 3, (1987).
  16. J. A. Brydson, "Rubbery Materials and Their Compounds", Elsevier Applied Science, London, Chapter 4, (1988).
  17. H. Ismail, M. R. Edyham, and B. Wirjosentono, Polymer Testing, 21, 139, (2002). https://doi.org/10.1016/S0142-9418(01)00060-5
  18. M. Jacob, S. Thomas, and K. T. Varughese, Compos. Sci. Technol., 64, 955 (2004). https://doi.org/10.1016/S0266-3538(03)00261-6
  19. H. Anuar and A. Zuraida, Composites Part B: Engineering, 42, 462, (2011).
  20. Y. H. Han, S. O. Han, D. Cho, and H.-I. Kim, Compos. Interf., 14, 559, (2007). https://doi.org/10.1163/156855407781291272
  21. J. M. Seo, D. Cho, and W. H. Park, J. Adhes. Interf., 9, 1, (2008).
  22. M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Compos. Sci. Technol., 68, 424, (2008). https://doi.org/10.1016/j.compscitech.2007.06.022
  23. A. K. Mohanty, M. Misra, and L. T. Drzal, Compos. Interf., 8, 313, (2001). https://doi.org/10.1163/156855401753255422
  24. G. Mehta, L. T. Drzal, A. K. Mohanty, and M. Misra, J. Appl. Polym. Sci., 99, 1055, (2006). https://doi.org/10.1002/app.22620
  25. U. S. Ishiaku, X. Y. Yang, Y. W. Leong, H. Hamada, T. Semba, and K. Kitagawa, J. Biobased Mater. Bioenerg., 1, 78, (2007).
  26. Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, and C. Mai, Composites: Part A, 41, 806 (2010). https://doi.org/10.1016/j.compositesa.2010.03.005