• Title/Summary/Keyword: natural convection.

Search Result 854, Processing Time 0.022 seconds

Instability Analysis of Natural Convection Flow along Isothermal Vertical Cylindrical Surfaces (등온 수직 원통표면을 연하여 흐르는 자연대류 유동의 파형 불안정성)

  • 유정열;윤준원;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.161-169
    • /
    • 1989
  • A stability problem on wave instability of natural convection flow along isothermal vertical cylindrical surfaces has been formulated, accounting for the non-parallelism of the basic flow and thermal fields. Then the problem is solved numerically under the simplifying assumption of the parallelism of the basic flow quantities. It is shown that the flow corresponding to the same characteristic boundary layer thickness becomes more stable as the value of the curvature parameter increases. The stability characteristics for Pr=0.7 appear to be more sensitive to the curvature parameter than those for Pr=7.

Heat Transfer Analysis above L$N_2$ Surface in HTS Transformer (HTS변압기에서 액체질소 표면 상부의 열전달 해석)

  • ;;Steven W. Van Sciver
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.174-177
    • /
    • 2003
  • Cooling load from the top plate to L$N_2$ surface, including wall conduction, gas conduction, radiation, and current leads, is investigated in a closed cooling system for HTS transformer. In general methods of load calculation, individual load is estimated separately, but they are actually coupled each other because of natural convection of nitrogen vapor. Using heat transfer analysis, we calculate cooling load with taking into account the effect of natural convection. Cooling load is under- estimated approximately 2 % when the natural convection is ignored. If the operating current is high, there will be a wide difference between actual cooling load and cooling load by individual calculation. Cooling load decreases with increasing number of radiation shield. With production, construction, and cooling load, three radiation shields are proper to 1 MVA HTS transformer.

  • PDF

Natural Convection Heat Transfer in Inclined Cylindrical Water Layers (경사진 원형 수층에서의 자연대류 열전달)

  • 장병훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.787-794
    • /
    • 2003
  • The effect of inclination angle on natural convection heat transfer has been studied for water layers. The range of the Raleigh number was from the subcritical value to 1.4${\times}$10$^{7}$ , and the range of the inclination angle, $\theta$, measured from the horizontal was 0$\leq$$\theta$$\leq$180$^{\circ}$. For horizontal water layers, present results agreed well with the results of previous investigators and also showed significant departures from the results of air layers in the turbulent regime. Inclined cylindrical water layers showed secondary maxima in heat transfer, whereas rectangular air layers showed continuous decline of Nusselt number.

Optimal design of HTS current lead considering natural convection (자연대류를 고려한 초전도 전류도입선의 최적 설계)

  • 손봉준;설승윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.269-273
    • /
    • 2003
  • In this paper the HTS current lead for superconducting device is studied numerical method. The current lead is cooled by surrounded He gas by natural convection. To find wall heat flux, the linearization method is adopted Numerical results using natural convection cooling are compared with conventional cooling methods such as conduction cooling and vapor cooling. The results shows that the minimum heat dissipation is much smaller than conduction cooling. Also, the minimum heat dissipation is obtained for the non-zero gradient of temperature at warm end. HTS current lead operating current sharing mode is reduce heat flow to superconducting system.

  • PDF

Natural convection of nanofluid flow between two vertical flat plates with imprecise parameter

  • Biswal, U.;Chakraverty, S.;Ojha, B.K.
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.219-235
    • /
    • 2020
  • Natural convection of nanofluid flow between two vertical flat plates has been analyzed in uncertain environment.Anon-Newtonian fluid SodiumAlginate (SA) as base fluid and nanoparticles ofCopper(Cu) are taken into consideration. In thepresentstudy,we have takennanoparticle volume fraction as an uncertain parameterin terms offuzzy number. Fuzzy uncertainties are controlled by r-cut and parametric concept. Homotopy PerturbationMethod (HPM) has been used to solve the governing fuzzy coupleddifferential equationsforthe titled problem.Forvalidation, presentresults are comparedwith existingresultsforsome special casesviz. crisp case andthey are foundto be ingood agreement.

Three-dimensional natural convection cooling of the electronic device with the effects of convective heat dissipation and vents (전자장비에서 벽면의 대류열방출 및 통기구의 효과를 고려한 3차원 자연대류 냉각)

  • ;;;Baek, Chang-In;Lim, Kwang-Ok
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3072-3083
    • /
    • 1995
  • The numerical simulation on the three-dimensional natural convection heat transfer in the enclosure with heat generating chip is performed, and the effects of convective heat loss and vents are also examined. The effects of the Rayleigh number and outer Nusselt number (Nu$_{0}$) on the maximum chip temperature and the fractions of heat loss from the hot surfaces are investigated. The results show that conduction through the substrate is dominant in heat dissipation. With the increase of Rayleigh number, heat dissipation through the chip surfaces increases and heat loss through the substrate decreases. Maximum dimensionless temperature with vents is found to decrease about 40% compared to the one without vents at Nu$_{0}$=0.l. It is also shown that effects of size and location of the vents are negligible.ble.

A Numerical Study of Natural Convection in a Horizontal Enclosure with Heat-Generating Conducting Body (발열 전도체가 존재하는 밀폐계 내부의 자연대류 현상에 대한 수치적 연구)

  • Lee, Jae-Ryong;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1177-1182
    • /
    • 2004
  • The physical model considered here is a horizontal layer of fluid heated below and cooldabove with a heat-generating conducting body placed at the center of the layer. The body genrates a constant amount of heat as initial condition. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral methodology for various of Rayleigh number from $10^3$ to $10^6$. Multi-domain Technique is used to handle heat-generating conducting body. The results for the case of heat-generating body are also compared to those of adaibatic body.

  • PDF

Two-Dimensional Laminar Natural Convection Heat Transfer with Surface Radiation in a Cavity (캐비티내에서 표면복사를 고려한 2차원 층류 자연대류 열전달)

  • Park, H.Y.;Park, K.W.;Han, C.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.3
    • /
    • pp.217-232
    • /
    • 1992
  • A Numerical study on two-dimensional laminar natural convection with and without surface radiation in fully or partially open square cavity was performed. The cavity has one vertical heated wall facing a vertical opening and two horizontal insulated walls. The pressure boundary condition was applied to the opening instead of the velocity boundary condition. The results of this study showed that the increase of partition length decreased the convective and the radiative Nusselt numbers. It was also found that the increase of wall emissivity decreased the convective Nusselt numbers but increased the radiative Nusselt numbers.

  • PDF

Natural Convection of Air in a Horizontal Annulus with the Inner Cylinder Cooled by Constant Heat Flux (일정 열 유속으로 냉각되는 안쪽 실린더를 갖는 수평 환형 공간에서의 공기의 자연 대류)

  • 유주식;엄용균;김용진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.755-762
    • /
    • 2000
  • Natural convection of air in a horizontal annulus with the inner cylinder cooled by the application of a constant heat flux and the isothermally heated outer cylinder is considered. The bifurcation phenomenon of flow patterns and the heat transfer characteristics are numerically investigated. The zero initial condition induces a unicellular flow in a half annulus. A bicellular flow consisting of two counter-rotating eddies in a half annulus can be obtained above a certain critical Rayleigh number. A transition from the bicellular to the unicellular flow occurs with a decrease in Rayleigh number. Hysteresis phenomena have not been observed. In the regime of dual flows, the overall Nusselt number of the bicellular flow is greater than that of the unicellular flow.

  • PDF

Numerical analysis of turbulent natural convection in a cylindrical transformer enclosure (변압기를 모델링한 두 개의 동심 원형 실린더 내에서 난류 자연대류의 수치해석)

  • 오건제;하수석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.157-166
    • /
    • 1999
  • Numerical calculations of turbulent natural convection in an enclosure of the 20 kYA oil-immersed transformer model are presented. The transformer is modelled as two concentric cylinders with different heights and diameters. The thermal boundary layers are well represented in the temperature distributions along the wall of the transformer model. The flow stratification between the hot and cold walls can not be seen in the transformer model. The turbulence eddy viscosity has its maximum at the center of the core and its maximum values at the top of the core are larger than those at the bottom of the core.

  • PDF