• 제목/요약/키워드: natural convection model

검색결과 194건 처리시간 0.028초

SIMULATION OF CORE MELT POOL FORMATION IN A REACTOR PRESSURE VESSEL LOWER HEAD USING AN EFFECTIVE CONVECTIVITY MODEL

  • Tran, Chi-Thanh;Dinh, Truc-Nam
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.929-944
    • /
    • 2009
  • The present study is concerned with the extension of the Effective Convectivity Model (ECM) to the phase-change problem to simulate the dynamics of the melt pool formation in a Light Water Reactor (LWR) lower plenum during hypothetical severe accident progression. The ECM uses heat transfer characteristic velocities to describe turbulent natural convection of a melt pool. The simple approach of the ECM method allows implementing different models of the characteristic velocity in a mushy zone for non-eutectic mixtures. The Phase-change ECM (PECM) was examined using three models of the characteristic velocities in a mushy zone and its performance was compared. The PECM was validated using a dual-tier approach, namely validations against existing experimental data (the SIMECO experiment) and validations against results obtained from Computational Fluid Dynamics (CFD) simulations. The results predicted by the PECM implementing the linear dependency of mushy-zone characteristic velocity on fluid fraction are well agreed with the experimental correlation and CFD simulation results. The PECM was applied to simulation of melt pool formation heat transfer in a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lower plenum. The study suggests that the PECM is an adequate and effective tool to compute the dynamics of core melt pool formation.

병렬 유한요소 해석기법을 이용한 유동장 해석 (Parallel Finite Element Simulation of the Incompressible Navier-stokes Equations)

  • 최형권;김범준;강성우;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.8-15
    • /
    • 2002
  • For the large scale computation of turbulent flows around an arbitrarily shaped body, a parallel LES (large eddy simulation) code has been recently developed in which domain decomposition method is adopted. METIS and MPI (message Passing interface) libraries are used for domain partitioning and data communication between processors, respectively. For unsteady computation of the incompressible Wavier-Stokes equation, 4-step splitting finite element algorithm [1] is adopted and Smagorinsky or dynamic LES model can be chosen fur the modeling of small eddies in turbulent flows. For the validation and performance-estimation of the parallel code, a three-dimensional laminar flow generated by natural convection inside a cube has been solved. Then, we have solved the turbulent flow around MIRA (Motor Industry Research Association) model at $Re = 2.6\times10^6$, which is based on the model height and inlet free stream velocity, using 32 processors on IBM SMP cluster and compared with the existing experiment.

  • PDF

표면방사율에 따른 복사단열시스템의 열관류성능 평가 연구 (Evaluation of U-value for Radiant Barrier Systems in Relation to Surface Emissivity)

  • 김기세;이동규;윤종호;송인춘
    • 태양에너지
    • /
    • 제20권3호
    • /
    • pp.39-50
    • /
    • 2000
  • Radiant barrier systems(RES) constructed with low emissivity materials bounded by an open air space can be used to reduce the net radiation transfer between two surfaces. To analyze the heat transfer characteristics of the radiant barrier systems which consist of a single-glass and radiation barriers, a simple theoretical model based on energy balances was suggested. And the model was validated by means of the experimental results. Using a guarded hot box, the temperatures of layers in selected RES and energy use for each cases were measured. The results show that the model well explained the heat transfer characteristics of those RES. Also, the heat transfer coefficient correlations considering natural and forced convection heat transfer ware suggested. It is found that the heat transfer efficiency of a RBS with aluminium surface improved up to 66.6% over that of a single glazing system.

  • PDF

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.

Combustion Instability Mechanism of a Lean Premixed Gas Turbine Combustor

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.906-913
    • /
    • 2003
  • Lean premixed combustion has been considered as one of the promising solutions for the reduction of NOx emissions from gas turbines. However, unstable combustion of lean premixed flow becomes a real challenge on the way to design a reliable, highly efficient dry low NOx gas turbine combustor. Contrary to a conventional diffusion type combustion system, characteristics of premixed combustion significantly depend on a premixing degree of combusting flow. Combustion behavior in terms of stability has been studied in a model gas turbine combustor burning natural gas and air. Incompleteness of premixing is identified as significant perturbation source for inducing unstable combustion. Application of a simple convection time lag theory can only predict instability modes but cannot determine whether instability occurs or not. Low frequency perturbations are observed at the onset of instability and believed to initiate the coupling between heat release rate and pressure fluctuations.

하이드레이트 펠릿의 비평형 분해과정 수치해석 (NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION)

  • 강정호;남진현;김찬중;송명호
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.50-57
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

급배기 위치에 따른 바닥급기 공조시스템의 냉방 열환경 (Thermal Comfort of the Floor Supply Air Conditioning System for Different Supply-return Locations during Cooling)

  • 김요셉;김영일;유호선
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.476-485
    • /
    • 2000
  • This study numerically investigates thermal comfort in a space cooled by the floor-supply air conditioning system, in which three different supply-return locations, one floor supply-ceiling return and two floor supply-floor returns, are treated. A complementary experiment is peformed to validate the present numerical analysis, and the prediction agrees favorably with the measured data. In the numerical procedure, a simplified model mimicking the inlet flow through the diffuser is developed for efficient simulations. The calculated results show that the ceiling return type is far better in thermal comfort than the floor return ones within the extent of this study, which seems to be caused by effective vertical penetration of the supply air against natural convection. It is also revealed that the arrangement of port locations in the floor supply-floor return system has insignificant effect on the cooling performance. For selecting a proper system, other characteristics including the heating performance should be accounted for simultaneously with the present estimation.

  • PDF

Honeycomb을 利용한 太陽熱 集熱器의 熱效率增大에 관한 硏究 (A Study on Increasing Thermal Performance of Solar Collector by Utilizing Honeycomb Structures)

  • 김종보;박영칠
    • 대한기계학회논문집
    • /
    • 제7권4호
    • /
    • pp.392-397
    • /
    • 1983
  • In the present study, improvement of the solar collector performance by utilizing honeycomb structures is being investigated. Installation of honeycomb structures inside of the collector induces the suppression of would-be natural convection phenomena within the collector enclosure spacing. It also minimizes infrared radiation heat loss from the collector absorber plate to the surrounding. Experiments have been carried out a collector with 40*20mm rectangular honeycombs, 20*20mm square honeycombs and without honeycombs. The results are presented for the three cases for comparisons. The collector model has been installed at various tilt angle from 15.deg. to 60.deg. measured from the ground. The influence of the tilt angle to the heat performance of the collector is also presented.

The Onset of Natural Convection and Heat Transfer Correlation in Horizontal Fluid Layer Heated Uniformly from Below

  • Kim, Min-Chan;Kim, Sin
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1451-1460
    • /
    • 2001
  • The critical condition of the onset of buoyancy-driven convective motion of uniformly heated horizontal fluid layer was analysed by the propagation theory which transforms the disturbance quantities similarly. The dimensionless critical time, $\tau$$\sub$c/, is obtained as a function of the Rayleigh number and the Prandtl number. Based on the stability criteria and the boundary-layer instability model, a new heat transfer correlation which can cover whole range of Rayleigh number was derived. Our theoretical results predict the experimental results quite reasonably.

  • PDF

THERMO-MECHANICAL ANALYSIS OF OPTICALLY ACCESSIBLE QUARTZ CYLINDER UNDER FIRED ENGINE OPERATION

  • Lee, K.S.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • 제1권2호
    • /
    • pp.79-87
    • /
    • 2000
  • Analytical approach was followed in this work under both the steady state and transient operating conditions to find optimum boundary conditions, where the optically accessible quartz engine can run safely without breaking. Temperature and stress distribution was predicted by FEM analysis. In order to validate thermal boundary condition, model reliability and constraint, outside cylinder temperature was measured and previous study was also followed up numerically. To reduce thermal stress level, three types of outside cooling (natural, moderate forced and intensive forced convection) were considered. Effects of clamping force and combustion pressure were conducted to investigate mechanical stress level. Cylinder thickness, was changed to fine the optimum cylinder thickness. The versatile results achieved from this work can be basic indication, which is capable of causing a sudden quartz cylinder breaking during fired operation.

  • PDF