Browse > Article
http://dx.doi.org/10.5516/NET.2009.41.7.929

SIMULATION OF CORE MELT POOL FORMATION IN A REACTOR PRESSURE VESSEL LOWER HEAD USING AN EFFECTIVE CONVECTIVITY MODEL  

Tran, Chi-Thanh (Nuclear Power Safety Division, Royal Institute of Technology)
Dinh, Truc-Nam (Nuclear Power Safety Division, Royal Institute of Technology)
Publication Information
Nuclear Engineering and Technology / v.41, no.7, 2009 , pp. 929-944 More about this Journal
Abstract
The present study is concerned with the extension of the Effective Convectivity Model (ECM) to the phase-change problem to simulate the dynamics of the melt pool formation in a Light Water Reactor (LWR) lower plenum during hypothetical severe accident progression. The ECM uses heat transfer characteristic velocities to describe turbulent natural convection of a melt pool. The simple approach of the ECM method allows implementing different models of the characteristic velocity in a mushy zone for non-eutectic mixtures. The Phase-change ECM (PECM) was examined using three models of the characteristic velocities in a mushy zone and its performance was compared. The PECM was validated using a dual-tier approach, namely validations against existing experimental data (the SIMECO experiment) and validations against results obtained from Computational Fluid Dynamics (CFD) simulations. The results predicted by the PECM implementing the linear dependency of mushy-zone characteristic velocity on fluid fraction are well agreed with the experimental correlation and CFD simulation results. The PECM was applied to simulation of melt pool formation heat transfer in a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lower plenum. The study suggests that the PECM is an adequate and effective tool to compute the dynamics of core melt pool formation.
Keywords
Heat Transfer; Effective Convectivity Model; Characteristic Velocity; Phase Change; Mushy Zone; Core Melt Pool; Severe Accident;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 M. OKADA, “Analysis of Heat Transfer during Melting from a Vertical Walls”, Int. J. Heat Mass Transfer, Vol. 27 (11), pp. 2057-2066, 1984   DOI   ScienceOn
2 V. R. VOLLER and C. PRAKASH, 'A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems', J. Heat Mass Transfer, Vol. 30 (8), pp.1709-1719, 1987   DOI   ScienceOn
3 Y. CAO, A. FAGHRI and W. S. CHANG, “A Numerical Analysis of Stefan Problems for Generalized Multi- Dimensional Phase-Change Structures Using the Enthalpy Transforming Model”, Int. J. Heat Mass Transfer, Vol. 32 (7), pp. 1289-1298, 1989   DOI   ScienceOn
4 B. R. SEHGAL, V. A. BUI, T. N. DINH and R. R. NOURGALIEV, 'Heat Transfer Process in Reactor Vessel Lower Plenum during A Late Phase of In-Vessel Core Melt Progression', J. Advances in Nuclear Science and Technology, Vol. 26, pp. 103-135, 1998   DOI
5 Winter Meeting, Albuquerque, NM, USA, November 12-18, Vol. 95, pp. 629-631, 2006
6 V. A. BUI and T. N. DINH, “Modeling of Heat Transfer in Heated-Generating Liquid Pools by an Effective Diffusivity- Convectivity Approach”, Proceedings of $2^{nd}$ European Thermal-Sciences Conference, Rome, Italy, pp.1365-1372, 1996
7 V. ASMOLOV, N. N. PONOMAREV-STEPNOY, V. STRIZHOV, B. R. SEHGAL, “Challenges Left in the Area of In-Vessel Melt Retention”, J. Nuclear Engineering and Design, Vol. 209, pp. 87-96, 2001   DOI   ScienceOn
8 P. J. PRESCOTT, F. P. INCROPERA, D. R. GASKELL, “Convective-Transport Phenomena and Macrosegregation during Solidification of a Binary Metal Alloy. 2. Experiments and Comparisons with Numerical Predictions”, J. Heat Transfer-Transactions of the ASME, Vol. 116 (3), pp. 742-749, Aug. 1994   DOI   ScienceOn
9 U. STEINBERNER and H.H. REINEKE, “Turbulent Buoyancy Convection Heat Transfer with Internal Heat Sources”. Proceedings of the $6^{th}$ Int. Heat Transfer Conference, Toronto, Canada, Vol.2, pp.305-310, 1978
10 B. BINET, M. LACROIX, 'Numerical Study of Natural-Convection-Dominated Melting inside Uniformly and Discretely Heated Rectangular Cavities', Numerical Heat Transfer Part A-Applications, Vol. 33 (2), pp. 207-224, 1998   DOI   ScienceOn
11 O. KYMALAINEN, H. TUOMISTO, T. G. THEOFANOUS, “In-Vessel Retention of Corium at the Loviisa Plant”, J. Nuclear Engineering and Design, Vol. 169, pp. 109-130, 1997   DOI   ScienceOn
12 M. RAMACCIOTTI, C. JOURNEAU, F. SUDREAU, G. COGNET, “Viscosity Models for Corium Melts”, J. Nuclear Engineering and Design, Vol. 204, pp. 377-389, 2001   DOI   ScienceOn
13 H.-G. WILLSCHUETZ, E. ALTSTADT, B. R. SEHGAL, F.-P. WEISS, “Recursively Coupled Thermal and Mechanical FEM - Analysis of Lower Plenum Creep Failure Experiments”, Annals of Nuclear Energy, Vol. 33, pp.126-148, 2006   DOI   ScienceOn
14 T. G. THEOFANOUS, M. MAGUIRE, S. ANGELINI, T. SALMASSI, “The First Results from the ACOPO Experiment”, J. Nuclear Engineering and Design, Vol. 169, pp.49-57, 1997   DOI   ScienceOn
15 UDF Manual, Fluent 6.2 Documentation, Fluent Inc. 2005
16 B. R. SEHGAL, V. A. BUI, T. N. DINH, J. A. GREEN, G. KOLB, “SIMECO Experiments on In-Vessel Melt Pool Formation and Heat Transfer with and without a Metallic Layer”, Proceedings of In-Vessel Core Debris Retention and Coolability Workshop, Garching, Germany, March 3-6, pp. 205-213, 1998
17 F. B. CHEUNG , S.W. SHIAH, D.H. CHO and M.J. TAN, 'Modeling of Heat Transfer in A Horizontal Heat-Generating Layer by An Effective Diffusivity Approach'. ASME HTD-Vol. 192, pp.55-62, 1992
18 C. J. HO and S. CHEN, “Numerical Simulation of Melting of Ice around a Horizontal Cylinder”, Int. J. Heat Mass Transfer, Vol. 29 (9), pp. 1359-1368, 1986   DOI   ScienceOn
19 V. STRIZHOV, V. ASMOLOV, “Major Outcomes of the RASPLAV Project”, RASPLAV Seminar 2000, Munich, November, 2000
20 R. R. NOURGALIEV, T. N. DINH, “The Investigation of Turbulence Characteristics in an Internally-Heated Unstably-Stratified Fluid Layer”, J. Nuclear Engineering and Design, Vol. 178, pp. 235-258, 1997   DOI   ScienceOn
21 F. A. KULACKI and A. A. EMARA, “Steady and Transient Thermal Convection in a Fluid Layer with Uniform Volumetric Energy Sources”, J. Fluid Mech., Vol. 83, part 2, pp.375-395, 1977   DOI
22 V. G. ASMOLOV, S. V. BECHTA, V. B. KHABENSKY et al., “Partitioning of U, Zr and Fe between Molten Oxidic and Metallic Corium”, Proceeding of MASCA Seminar 2004, Aix-en-Provence, France, 2004
23 T. W. CLYNE, 'Numerical Modeling of Directional Solidification of Metallic Alloys', J. Metal Science, Vol. 16 (9), pp. 441-450, 1982   DOI
24 T. C. CHAWLA and S. H. CHAN, “Heat Transfer From Vertical/Inclined Boundaries of Heat-Generating Boiling Pools”, J. Heat Transfer, Vol. 104, pp.465-473, 1982   DOI
25 R. O. GAUNTT et al., “MELCOR Computer Code Manual, Core (COR) Package Reference Manuals”, NUREG/CR-6119, Vol. 2, Rev.2, Version 1.8.6, September 2005
26 T. G. THEOFANOUS, C. LIU, S. ADDITON, S. ANGELINI, O. KYMALAINEN, T. SALMASSI, “In-vessel Coolability and Retention of a Core Melt”, DOE/ID-1046, November 1994
27 V. R. VOLLER and A. D. BRENT, “Modelling the Mushy Region in a Binary Alloy”, App. Math Modelling, Vol. 14, pp. 320-326, 1990   DOI   ScienceOn
28 N. SHAMSUNDAR, E. M. SPARROW, 'Analysis of Multidimensional Conduction Phase change Via the Enthalpy Model', J. Heat Transfer, Vol. 97 (3), pp. 333-340, 1975   DOI
29 L. BERNAZ, J.- M. BONNET, B. SPINDLER, C. VILLERMAUX, “Thermal Hydraulic Phenomena in Corium Pools: Numerical Simulation with TOLBIAC and Experimental Validation with BALI”, Proceedings of In- Vessel Core Debris Retention and Coolability Workshop, Garching, Germany, March 3-6, pp. 185- 193, 1998
30 C. T. TRAN, T. N. DINH, “An Effective Convectivity Model for Simulation of In-Vessel Core Melt Progression in Boiling Water Reactor”, 2007 International Congress on Advances in Nuclear Power Plants (ICAPP 2007), Nice Acropolis, France, May 13-18, 2007
31 M. HELLE, O. KYMALAINEN and H. TUOMISTO, “Experimental Data on Heat Flux Distribution from a Volumetrically Heated Pool with Frozen Boundaries”, Proceedings of In-Vessel Core Debris Retention and Coolability Workshop, Garching, Germany, March 3-6, pp. 173-183, 1998
32 V. R. VOLLER and C. R. SWAMINATHAN, “General Source-Based Method for Solidification Phase Change”, J. Numerical Heat Transfer, Part B, Vol. 19, pp. 175-189, 1991   DOI
33 “MAAP4 Users Manual”, Fauske Associated Inc., Vol. 2, 1999
34 A. MIASSOEDOV, T. CRON, J. FIOT, S. SCHMIDTSTIEFEL, T. WENZ, I. IVANOV, D. POPOV, "Results of the LIVE-L1 Experiment on Melt Behavior in RPVLower Head Performed within the LACOMERA Project at the Forschungszentrum Karlsruhe", Proceedings of 15th International Conference on Nuclear Engineering Nagoya (ICONE), Japan, April 22-26,2007