• Title/Summary/Keyword: natural condition

Search Result 3,364, Processing Time 0.034 seconds

The Study on Micro Soldering Using Low-Residue Flux in $N_2$Atmosphere (질소 분위기에서 저잔사 플럭스를 사용한 마이크로 솔더링에 관한 연구)

  • 최명기;정재필;이창배;서창제;황선효
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.7-15
    • /
    • 2000
  • The purpose of this work is to evaluate the solderahility and characteristics of solder joints. Bridge defect of solder joint was examined in natural atmosphere and $N_2$ condition. Consequently, wettability was excellent for each of Sn-Pb plated Cu specimen, Sn plated Cu specimen, and Cu polished in $N_2$ condition. The wetting time in $N_2$ condition was shorter than that of natural atmosphere condition, showing the decreasing values of about 0.2~0.45 seconds. The max. wetting force under the $N_2$ condition was more increasing that of natural atmosphere condition, showing the increasing values of about 1.8~2.8 N. With the result of wetting balance test, the wetting time ($t_2$) and wetting farce according to increasing amount of $N_2$ from 10 1/min to 30 1/min, the wetting time ($t_2$) was reduced about 0.25 second and wetting force was increased about 2.3 N. In non-cleaning flux, when $N_2$ gas is applied, it is compensated to decrease of wettability. In the case of using the $N_2$ gas, the wettability was improved. The reason for improving wettability is due to preventing the formation of dross. The generation rate of bridge in $N_2$ condition decreased than that of natural atmosphere, and when the specimen had a fine pitch, the rate of bridge defects was considerably decreased in $N_2$ condition, showing the decreasing rate of 25~75%.

  • PDF

Study on the Natural Frequency of Wind Turbine Tower Based on Soil Pile interaction to Evaluate Resonant Avoidance Frequency (지반조건 상호작용을 고려한 풍력발전타워의 공진회피 진동수 산정을 위한 고유진동수 해석 연구)

  • Kim, Pyoung-Hwa;Kang, Sung-Yong;Lee, Yun-Woo;Kang, Young-jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.734-742
    • /
    • 2016
  • Global warming and the depletion of fossil fuels have been caused by decades of reckless development. Wind energy is one form of renewable energy and is considered a future energy source. The wind tower is designed with a fundamental frequency in the soft-stiff design between the 1P and 3P range to avoid resonance. Usually, to perform natural frequency analysis of a wind tower, the boundary condition is set to the Fixed-End, and soil-pile interaction is not considered. In this study, consideration of the effect of soil-pile interaction on the wind tower was included and the difference in the natural frequency was studied. The fixed boundary condition was not affected by the soil condition and depth of the pile and the coupled spring boundary condition was unaffected by the depth of pile but affected by the depth of the pile, and the Winkler spring boundary condition is affected by both the soil condition and the depth of the pile. Therefore, the coupled spring boundary condition should be used in shallow depth soil conditions because the soil condition does not take the shallow depth soil into consideration.

Effect of Storage Conditions on the Quality of Green Tea Beverage (저장 조건이 녹차 음료의 품질에 미치는 영향)

  • Lee, Jung-Min;Lim, Sang-Wook;Cho, Sung-Hwan;Choi, Sung-Gil;Heo, Ho-Jin;Lee, Seung-Cheol
    • Journal of agriculture & life science
    • /
    • v.43 no.3
    • /
    • pp.27-34
    • /
    • 2009
  • Green tea was prepared by soaking 1.5 g of green tea leaves into 100 mL of distilled water at $75^{\circ}C$ for 5 min. The green tea was stored at three different conditions - (A) green tea was stored at not-artificially excluding natural light condition, at natural air condition, and without addition of vitamin C; (B) green tea was stored at artificially excluding natural light condition by wrapping a vial with aluminium foil, at nitrogen filling up condition, and with addition of 30 mg/100 mL of vitamin C; and (C) green tea was stored at artificially excluding natural light condition by wrapping a vial with aluminium foil, at nitrogen filling up condition, and without addition of vitamin C. After 28 days of storage at $4^{\circ}C$, the chemical quality of the green tea was evaluated. Total phenolic contents of (A), (B), and (C) green tea decreased to 71.50, 73.88 and 75.07%, respectively, after storing for 28 days compared to those of beginning state. DPPH radical scavenging activities of (A), (B), and (C) green tea were 87.87, 92.93 and 88.39%, respectively. Epigallocatechin gallate (EGCG), the main active compounds of green tea, contents of (A), (B), and (C) green tea were 130.61, 136.47 and 4.34%, respectively. The results indicated that light, air condition, and vitamin C were significantly important to the chemical quality of green tea during storage.

Effect of Light Source on Organic Acid, Sugar, and Flavonoid Concentrations in Buckwheat

  • Kim, Sun-Lim;Lee, Han-Bum;Park, Cheol-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.1
    • /
    • pp.42-47
    • /
    • 2002
  • The major free sugars of buckwheat plants were fructose, glucose, and maltose but their contents and compositions were influenced by the different wavelength of light. Free sugar contents of Clfa 39 (Fagopyrum tataricum) were higher than those of Yangjul-maemil (Fagopyrum esculentum) regardless of the light sources. As treated with red and blue light, the free sugar contents in the leaves of buckwheat plants were slightly increased, but their contents in the stems and flowers were lower than those of natural light condition. Under the natural light condition, maltose was detected in every tissues of buckwheat plants, but as treated with blue and red light, it was not detected in the flowers of buckwheat plants. Citric, malic and acetic acid were detected as major organic acids in buckwheat plants. Red and blue lights decreased the total organic acid contents in buckwheat plants as compared with natural light condition. It was considered that blue light are less active than red light for the accumulation of organic acids. Tataric acid was detected only in the leaves of buckwheat plants, however, as treated with red and blue light, it was not detected in the leaves of Clfa 39. Flowers of Yangjul-maemil contained a considerable amount of rutin and quercitrin. Only small amount of quercitrin was detected in leaves, but it was not detected in stems. On the other hand, Clfa 39 leaves contained a considerable amount of rutin, quercetin and small amount of quercitrin, but quercitrin and quercetin were detected only in the stems of Clfa 39. Red and blue lights significantly decreased the contents of rutin, quercitrin, and quercetin in buckwheat plants as comparing with natural light condition. Rutin content in the flowers of Clfa 39 was increased under the red and blue light conditions.

Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning

  • Lydon, Darragh;Taylor, S.E.;Lydon, Myra;Martinez del Rincon, Jesus;Hester, David
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.723-732
    • /
    • 2019
  • Globally road transport networks are subjected to continuous levels of stress from increasing loading and environmental effects. As the most popular mean of transport in the UK the condition of this civil infrastructure is a key indicator of economic growth and productivity. Structural Health Monitoring (SHM) systems can provide a valuable insight to the true condition of our aging infrastructure. In particular, monitoring of the displacement of a bridge structure under live loading can provide an accurate descriptor of bridge condition. In the past B-WIM systems have been used to collect traffic data and hence provide an indicator of bridge condition, however the use of such systems can be restricted by bridge type, assess issues and cost limitations. This research provides a non-contact low cost AI based solution for vehicle classification and associated bridge displacement using computer vision methods. Convolutional neural networks (CNNs) have been adapted to develop the QUBYOLO vehicle classification method from recorded traffic images. This vehicle classification was then accurately related to the corresponding bridge response obtained under live loading using non-contact methods. The successful identification of multiple vehicle types during field testing has shown that QUBYOLO is suitable for the fine-grained vehicle classification required to identify applied load to a bridge structure. The process of displacement analysis and vehicle classification for the purposes of load identification which was used in this research adds to the body of knowledge on the monitoring of existing bridge structures, particularly long span bridges, and establishes the significant potential of computer vision and Deep Learning to provide dependable results on the real response of our infrastructure to existing and potential increased loading.

The Influence of Muddy Water in Imha Reservoir on the Ichthyofauna and Fish Growth (임하호의 탁수가 어류상 및 어류생장에 미치는 영향)

  • Han, Seung-Cheol;Lee, Hak-Young;Seo, Eul-Won;Shim, Jae-Hun;Lee, Jong-Eun
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1104-1110
    • /
    • 2007
  • The number of investigated fish collected from the Andong and the Imha reservoir were 2,540 individuals 20 species belonging to 7 families, 850 individuals 11 species belonging to 4 families respectively from May 2005 to March 2006. The total number of the common 3 species individuals investigated caught from the Andong reservoir and the Imha reservoir were 486 individuals and 124 individuals respectively. The investigated individuals is similar(${\pm}2.5$ mm) to 171 individuals make a comparative study. The Opsariichthys uncirostris, Culter brevicauda, Hemiculter eigenmanni of length-weight relationship were TW = $0.00007TL^{3.0543}$, TW = $0.0000009TL^{3.3654}$, TW = $0.00000^{3.3872}$ in the Andong reservoir and TW = $0.00002TL^{2.8493}$, TW = $0.00001TL^{2.8744}$, TW = $0.000004TL^{3.1082}$ in the Imha reservoir respectively. The Condition factor(K) of the Andong reservoir showed the positive slopes in all three species and to be in a good nutrition condition; where as the condition factor(K) of the Imha reservoir showed the negative slopes in two species except in H. eigenmanni and appeared to be in a little bad nutrition condition. Relative condition factor(Kn) indicating that O. uncirostris and C. brevicauda in Andong reservoir is more rotund than ones of Imha reservoir but H. eigenmanni in the Imha reservoir is more rotund than the ones of the Andong reservoir.

Growth Conditions of Natural Monument Old Big Trees in Gyeongsangnamdo, Korea (경상남도 천연기념물 노거수의 생육환경 연구)

  • Kim, Hyo-Jeong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.5
    • /
    • pp.103-112
    • /
    • 2011
  • Old big tree transcends the simple meaning of trees as they are the natural monuments that embody the people's history and culture of this land. The Cultural Heritage Administration of Korea(CHA) defines and protects old big tree based not only on the size of the tree but also on its definitive cultural and natural factors such as value, implications, and originality. This research aims to identify and analyze the growth conditions, soil conditions and location character of 20 old big tree in Gyeongsangnamdo korea. The research examined the soundness of the arboreal form, the degree of damage on the bark, as well as the quantity of leafs levels to evaluate the overall condition of growth and development. Also, 9 elements such as soil texture, nitrogen and organic matter content, soil pH, phosphoric acid and EC were further analyzed The research analyzed in correlation of Growth condition and soil. Tree health related positivity that total nitrogen and organic matter. The result which analyzes location character, With natural monument old big trees raising a hand the area where is contiguous appeared with the fact that the farming village style where the rice field and the arable land of field etc. This research aimed at generating some foundational reference data for the analysis of the habitation and management conditions of natural monument old big tree within the Gyeongsangnamdo korea.

Application of Solar Chimney System for Natural Ventilation in Underground Space (지하공간의 자연환기를 위한 태양 굴뚝 시스템의 응용)

  • Jang, Hyang-In;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.87-95
    • /
    • 2010
  • This study analyzed the performance of solar chimney system for natural ventilation in underground space. A mathematical model of the solar chimney was proposed in order to predict its performance under varying parameters and Korea climatic condition. Steady state heat transfer equations were set up using a energy balanced equations and solved using a inverse matrix method. Numerical simulation program to analyze system was developed by using MATLAB. As the results, the ventilation performance of the solar chimney was determined by the temperature difference of air channel and inlet, and the temperature difference was influenced by insolation, stack height and distance of air gab. Also the solar chimney system can provide $262.9m^3/h$ of annual average ventilation rate. Because seasonal differences of ventilation rate was calculated within 25%, the solar chimney system can be used for every season in Korea climatic condition. Through this study, performance of solar chimney system for natural ventilation was verified by numerical method. Consequently, the solar chimney system is proved to be effective device for natural ventilation utilizing at all times, and the additional studies should be made through the experimental method for imagineering and commercialization.

Effects of decay heat and cooling condition on the reactor pool natural circulation under RVACS operation in a water 2-D slab model

  • Min Ho Lee ;Dong Wook Jerng ;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1821-1829
    • /
    • 2023
  • The temperature distribution of the reactor pool under natural circulation induced by the RVACS operation was experimentally studied. According to the Bo' based similarity law, which could reproduce the temperature distribution of the working fluid under natural circulation, SINCRO-2D facility was designed based on the PGSFR. It was reduced to 1 : 25 in length scale, having water as a simulant of the sodium, which is the original working fluid. In general, temperature was stratified, however, effect of the natural circulation flow could be observed by the entrainment of the stratified temperature. Relative cooling contribution of the upper plenum (narrow gap) and lower plenum was approximately 0.2 and 0.8, respectively. In the range of decay heat from 0.2% to 1.0%, only the magnitude of the temperature was changed, while the normalized temperature maintained. Boundary temperature distribution change made a global temperature offset of the pool, without a significant local change. Therefore, the decay heat and cooling boundary condition had no significant effect on temperature distribution characteristics of the pool within the given range of the decay heat and boundary temperature distribution.