• Title/Summary/Keyword: natural antimicrobial agents

Search Result 144, Processing Time 0.031 seconds

Antibacterial Activities of Edible Plant Extracts against Strawberry Spoiling bacteria Staphylococcus sp. (식용식물의 유기용매 추출물로부터 딸기부패균 Staphylococcus sp.에 대한 항균활성 검정)

  • 하철규;이동규;강선철
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.226-231
    • /
    • 2000
  • Antibacterial activities of edible plant extracts were investigated to develop natural antimicrobial agents protecting horticultural products from spoiling-microorganisms during their storage. Crude extracts of Artemisa capillaris Allium tuberosum Ailanthus altissima Zanthoxylum pieperitum Pinus densiflora Morus alba lxeris dentata and Allium sativum showed remarkable antibacterial activities against Escherichia coli K 12 and Bacillus subtilis KCTC 1028 After solvent extraction of the crude extracts with n-hexane ethyl acetate chloroform and water in sequence each fractions was re-examined for the antbacterial activities. As results the ethyl acetate fractions of A. capillaris Aaltissima, P. densiflora and I. dentata and all fractions of Z. piperitum and A. sativium showed relatively strong antibacterial activities against E. coli and B. subtilis and the ethyl acetate fraction of A. altissima was the strongest(6mm and 7mm respectively) against two strawberry-spoiling bacteria isolated and identified at our laboratory as Staphylococcus sp. TG-101 and Staphylococcus sp. TG-102.

  • PDF

Potential Roles of Essential Oils on Controlling Plant Pathogenic Bacteria Xanthomonas Species: A Review

  • Bajpai, Vivek K.;Kang, So-Ra;Xu, Houjuan;Lee, Soon-Gu;Baek, Kwang-Hyun;Kang, Sun-Chul
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.207-224
    • /
    • 2011
  • Diseases caused by plant pathogenic bacteria constitute an emerging threat to global food security. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in several host plants leading to considerable losses in productivity and quality of harvests. Despite the ranges of controlling techniques available, the microbiological safety of economically important crops and crop plants including fruits and vegetables continues to be a major concern to the agriculture industry. On the other hand, many of the currently available antimicrobial agents for agriculture are highly toxic, non-biodegradable and cause extended environmental pollution. Besides, the use of antibiotics has provoked an increased resistance among the bacterial pathogens and their pathovars. Thus, novel efficient and safe remedies for controlling plant bacterial diseases are necessary. There has been an increasing interest worldwide on therapeutic values of natural products such as essential oils, hence the purpose of this review is to provide an overview of the published data on the antibacterial efficacy of essential oils that could be considered suitable for application in agriculture as biocontrol measures against plant pathogenic bacteria of Xanthomonas species. The current knowledge on the use of essential oils to control Xanthomonas bacteria in vitro and in vivo models has been discussed. A brief description on the legal aspects on the use of essential oils against bacterial pathogens has also been presented. Through this review, a mode of antibacterial action of essential oils along with their chemical nature and the area for future research have been thoroughly discussed.

Antimicrobial Activities of 1,4-Benzoquinones and Wheat Germ Extract

  • Kim, Myung-Hee;Jo, Sung-Hoon;Ha, Kyoung-Soo;Song, Ji-Hye;Jang, Hae-Dong;Kwon, Young-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1204-1209
    • /
    • 2010
  • We evaluated the antibacterial activities of selected edible Korean plant seeds against the food-borne pathogens Staphylococcus aureus KCTC1927, Escherichia coli KCTC2593, Salmonella typhimurium KCTC2054, and Bacillus cereus KCTC1014. While screening for antibacterial agents, we discovered that wheat germ extract contains 2,6-dimethoxy-1,4-benzoquinone (DMBQ) and is highly inhibitory to S. aureus and B. cereus. This is the first report of the antibacterial activity of wheat germ extract. We also investigated the antibacterial activities of the 1,4-benzoquinone standards 1,4-benzoquinone (BQ), hydroquinone (HQ), methoxybenzoquinone (MBQ), and 2,6-dimethoxy-1,4-benzoquinone (DMBQ). DMBQ and BQ were the most highly inhibitory to S. aureus and S. typhimurium, followed by MBQ and HQ. MICs for DMBQ and BQ ranged between 8 and 64 ${\mu}g/ml$ against the four foodborne pathogens tested. DMBQ and BQ showed significant antibacterial activity; the most sensitive organism was S. aureus with an MIC of 8 ${\mu}g/ml$. BQ exhibited good activity against S. typhimurium (32 ${\mu}g/ml$) and B. cereus (32 ${\mu}g/ml$). The results suggest that wheat germ extract has potential for the development of natural antimicrobials and food preservatives for controlling foodborne pathogens.

The development of the natural antimicrobial agents for the quality improvement of the packing pepper powder (포장 고춧가루제품의 품질 향상을 위한 천연 항균 물질 개발)

  • Woo, Na-Ri-Yah;Lee, Eun-Sang;Kim, Young-Ae;Kim, Bo-Kyung;Kim, Kyung-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.1017-1020
    • /
    • 2010
  • 최근 국산 농산물의 수요급증과 더불어 소비자들은 안전한 제품의 요구가 높아지고 있다. 이러한 요구에 맞는 제품 개발의 일환으로 미생물 제어가 된 고춧가루 포장제품의 품질향상을 위한 천연항균 물질 소재를 탐색하여 제품개발에 응용하였다. 천연물과 한방재료 중 고춧가루 제품에 적합한 소재를 스크리닝하여 항균물질을 탐색하였으며 고춧가루 제품 패킹에 응용하였다. 천연물 항균제의 개발 원칙은 산취 등 이취가 없어야 하며, 제품에 응용할 수 있는 용해성이나 믹싱의 효과를 높이도록 공정을 최적화 하였다. 또한 최종 천연물 항균제의 형태는 분말 형태로 개발하였다. 천연물에 대한 항균활성은 paper disk test를 통하여 비교하였으며, 항균력이 가장 우수한 소재는 황금추출물이었다. 또한 이들 추출물과 비타민 $B_1$ 인산염의 영향을 함께 비교하였다. 이 천연물 소재 추출물로 개발한 항균물질에 대한 효과는 일반세균, 대장균 검사를 실시하였다. 제품의 안정성 확보 및 유통기한 연장 가능성을 실험한 결과, 일반세균은 $1.0{\times}10^5$cfu/g, 대장균군은 $1.0{\times}10^2$cfu/g, 대장균은 불검출 되었다. 이들 추출물의 항균제 개발과 더불어 다양한 식품에 천연물 항균제로서의 적용 가능성을 모색하고자 하며, 안전한 천연 항균제 개발에 대한 기초 자료를 제공하는 기초 연구를 하고자 하였다.

  • PDF

Antibacterial effect of ethylacetate fraction of Orostachys japonicus on Enterococcus faecalis causing Endophthalmitis

  • Kim, Hanwoo;Park, Indal;Lee, Sangjun;Shin, Dongyoung;Kim, Jiyeun Kate
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.113-113
    • /
    • 2018
  • Endophthalmitis is a disease that causes ocular inflammation and has a catastrophic effect on eyesight. Recent studies show that Enterococcus faecalis is rapidly increasing causative bacterium of endophthalmitis. It is predicted that the increased endophthalmitis by E. faecalis is presumable due to the high resistance of E. faecalis to moxifloxacin (MFX), which is a common antibiotic used for eye drop. Because of the need for therapeutic agents to overcome this problem, this study sought to explore the feasibility of developing a combination therapy using Orostachys japonicus. The ethylacetate fraction of O. japonicus (OJA) used in this study. Antimicrobial activity was tested 13 E. faecalis strains including one E. faecalis standard strain, eight clinically isolated E. faecalis strains and four quinolone resistant E. faecalis strains using CLSI antibiotic susceptibility test method. Minimal Inhibitory Concentration (MIC) of OJA was confirmed to be $500{\mu}g/ml$ for all 13 strains. Then we tested for the synergistic effect of OJA to MFX using checkboard test method. The MIC of MFX was $0.25{\mu}g/ml$ for the standard strain and 8 for the clinical isolates, and $16{\sim}64{\mu}g/ml$ for the quinolone - resistant strains. When OJA was mixed with MFX, no synergistic effect was observed in all strains, but the antibacterial activity of OJA remained unchanged. Most ocular other strains can be removed by MFX except the MFX resistant E. faecalis, which can be removed by OJA in combination therapy. Therefore, OJA can be a potential candidate for the combined treatment endophthalmitis.

  • PDF

Perspectives for the Industrial Use of Bacteriocin in Dairy and Meat Industry (축산업 분야에서의 박테리오신의 산업적 이용 및 향후 전망)

  • Lee, Na-Kyoung;Lee, Joo-Yeon;Kwak, Hyung-Geun;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • More safe and natural food was recently needed by consumers. Antimicrobials including sodium azide, penicillin, and vancomycin were used for therapeutic agents against pathogens such as Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7 in dairy and meat industry. These antimicrobials and preservatives were prohibited in stock farm and food because they were caused resistant strain and side effects. Bacteriocins are proteinaceous compounds that may present antimicrobial activity towards important food-borne pathogens and spoilage-related microflora. Therefore, bacteriocins were reported as an alternative of antimicrobials. Due to these properties, bacteriocin-producing strains or purified bacteriocins have a great potential of use in biologically based food preservation systems. Despite the growing number of articles regarding on the isolation of bacteriocinogenic strains, genetic determinants for production, purification and biochemical characterization of these inhibitory substances, there are only limited reports of successful application of bacteriocins to dairy and meats. This review describes bacteriocins related to dairy and meat products for the further use.

Selection of Antifungal Bacteria Burkholderia lata CAB13001 for Control on Red Pepper Anthracnose and Its Control Efficacy in Field (고추 탄저병 방제제 Burkholderia lata CAB13001 선발 및 포장방제 효과)

  • Hahm, Soo-Sang;Kim, Byung-Ryun;Kwon, Mi-Kyung;Han, Kwang-Seop;Park, In-Hee;Seo, Kyung-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.649-660
    • /
    • 2018
  • To control the pepper anthracnose caused by Colletotrichum acutatum, antifungal bacterium strains which was selected among bacterium from natural soil, was tested the antimicrobial activity against various pathogens and its control efficacy on anthracnose disease in the fields. We confirmed that antagonistic activity of CAB13001 strain to pathogens such as Sclerotinia cepivorum, Sclerotinia sclerotium and Botrytis cinerea including Colletotrichum acutatum was remarkable superior with the dual culture method in the artificial medium. In vitro bioassay using the green pepper fruit, CAB13001 strain suppressed the lesion development of Anthracnose disease, and its control value compared to the untreated one was 82.4% on pepper fruit in field test. These results suggested that CAB13001 strain could be a very useful biological control agents to anthracnose disease caused by air born plant pathogens of pepper. By the way, analysis of nucleotide sequence of the gene 16S rDNA, antagonistic bacterium CAB13001 strain used in this study was identified as Burkholderia lata.

Nanoemulsion application in meat product and its functionality: review

  • Tri Ujilestari;Andi Febrisiantosa;Mohammad Miftakhus Sholikin;Rina Wahyuningsih;Teguh Wahyono
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.275-292
    • /
    • 2023
  • Nanotechnology in the food industry can increase the effectiveness of food ingredients. Nanotechnology can increase the bioavailability and absorption of bioactive compounds, enhance their stability, and improve the sensory quality of the product. Processed meat products are easily damaged due to bacterial activity. Advanced nanoemulsions as a meat preservative are nanoemulsions that can be used as preservative agents in meat products, particularly essential oil nanoemulsions, due to their antimicrobial and antioxidant properties. Its application is still limited to foods made from meat products. Therefore, this literature review examines nanoemulsion and its application in meat products and functionality improvement. Also, in the future, nanoemulsions in meat products must be made safe, and the government and businesses must work together to build consumer trust. It can be concluded that essential oil-based nanoemulsion has the potential to be used as an additive in meat products because it can kill bacteria, fight free radicals, improve flavor, and keep food fresh. Nanoemulsion is challenging in the meat industry because it can be toxic due to its tiny droplets (under 200 nm).

Antibiotic Reversal Activity of Piper longum Fruit Extracts against Staphylococcus aureus Multi-Drug Resistant Phenotype

  • Maryam Salah Ud Din;Umar Farooq Gohar;Hamid Mukhtar;Ibrar Khan;John Morris;Soisuda Pornpukdeewattana;Salvatore Massa
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.432-440
    • /
    • 2023
  • Irrational and injudicious use of antibiotics, easy availability of them as over-the-counter drugs in economically developing countries, and unavailability of regulatory policies governing antimicrobial use in agriculture, animals, and humans, has led to the development of multi-drug resistance (MDR) bacteria. The use of medicinal plants can be considered as an alternative, with a consequent impact on microbial resistance. We tested extracts of Piper longum fruits as new natural products as agents for reversing the resistance to antibiotics. Six crude extracts of P. longum fruits were utilized against a clinical isolate of multidrug-resistant Staphylococcus aureus.The antibiotic susceptibility testing disc method was used in the antibiotic resistance reversal analysis. Apart from cefoxitin and erythromycin, all other antibiotics used (lincosamides [clindamycin], quinolones [levofloxacin and ciprofloxacin], and aminoglycosides [amikacin and gentamicin]) were enhanced by P. longum extracts. The extracts that showed the greatest synergy with the antibiotics were EAPL (ethyl acetate [extract of] P. longum), n-BPL (n-butanol [extract of] P. longum), and MPL (methanolic [extract of] P. longum The results of this study suggest that P. longum extracts have the ability to increase the effectiveness of different classes of antibiotics and reverse their resistance. However, future studies are needed to elucidate the molecular mechanisms behind the synergy between antibiotic and phytocompound(s) and identify the active biomolecules of P. longum responsible for the synergy in S. aureus.

Potentiating Activity of (+)-Usnic Acid on EDTA and Sodium Azide Methicillin-resistant Staphylococcus aureus (메티실린-내성 포도상구균에 대하여 EDTA 및 Sodium Azide 병용에 의한 우스닌산 약효증대)

  • Lee, Young-Seob;Kim, Hye-Sung;Lee, Jae Won;Lee, Dae-Young;Kim, Geum-Soog;Kim, Hyoun-Wook;Noh, Geon-Min;Lee, Seung Eun;Lee, Sun Ae;Song, Ok Hee;Kwon, Dong-Yeul
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.122-127
    • /
    • 2016
  • Methicillin-Resistant Staphylococcus aureus(MRSA) is a multidrug-resistant(MDR) strain. (+)-Usnic acid(UA) is uniquely found in lichens, and is especially abundant in genera such as Usnea and Cladonia. UA has antimicrobial activity against human and plant pathogens. Therefore, UA may be a good antibacterial drug candidate for clinical development. In search of a natural products capable of inhibiting this multidrug-resistant bacteria, we have investigated the antimicrobial activity of UA against 17 different strains of the bacterium. In this study, the effects of a combination of UA and permeable agents against MRSA were investigated. For the measurement of cell wall permeability, UA with concentration of Ethylenediaminetetraacetic acid(EDTA) was used. In the other hand, Sodium azide($NaN_3$) was used as inhibitors of ATPase. Against the 17 strains, the minimum inhibitory concentrations(MICs) of UA were in the range of $7.81-31.25{\mu}g/ml$. EDTA or $NaN_3$ cooperation against MRSA showed synergistic activity on cell wall. UA and in combination with EDTA and $NaN_3$ could lead to the development of new combination antibiotics against MRSA infection.