DOI QR코드

DOI QR Code

Potential Roles of Essential Oils on Controlling Plant Pathogenic Bacteria Xanthomonas Species: A Review

  • Received : 2011.06.20
  • Accepted : 2011.07.24
  • Published : 2011.09.01

Abstract

Diseases caused by plant pathogenic bacteria constitute an emerging threat to global food security. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in several host plants leading to considerable losses in productivity and quality of harvests. Despite the ranges of controlling techniques available, the microbiological safety of economically important crops and crop plants including fruits and vegetables continues to be a major concern to the agriculture industry. On the other hand, many of the currently available antimicrobial agents for agriculture are highly toxic, non-biodegradable and cause extended environmental pollution. Besides, the use of antibiotics has provoked an increased resistance among the bacterial pathogens and their pathovars. Thus, novel efficient and safe remedies for controlling plant bacterial diseases are necessary. There has been an increasing interest worldwide on therapeutic values of natural products such as essential oils, hence the purpose of this review is to provide an overview of the published data on the antibacterial efficacy of essential oils that could be considered suitable for application in agriculture as biocontrol measures against plant pathogenic bacteria of Xanthomonas species. The current knowledge on the use of essential oils to control Xanthomonas bacteria in vitro and in vivo models has been discussed. A brief description on the legal aspects on the use of essential oils against bacterial pathogens has also been presented. Through this review, a mode of antibacterial action of essential oils along with their chemical nature and the area for future research have been thoroughly discussed.

Keywords

References

  1. Agrios, G. N. 2004. Plant Pathology. 5th ed. Academic Press, London.
  2. Akhtar, M. A., Rahber-Bhatti, M. H. and Aslam, M. 1995 Antibacterial activity of plant diffusate against Xanthomonas campestris pv. citri. Int. J. Pest Manage. 43:149-153.
  3. Angioni, A., Barra, A., Cereti, E., Barile, D., Coïsson, J. D., Arlorio, M., Dessi, S., Coroneo, V. and Cabras, P. 2004. Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L. J. Agric. Food Chem. 52:3530-3535. https://doi.org/10.1021/jf049913t
  4. Araujo, J. S. P., Robbs, C. F. and Ribeiro, R. L. D. 2003. Manejo integrado de fitobacterioses de importancia economica no Brasil. Parte 1. Rev. Ann. Pathol. Plantas 11:107-131.
  5. Araujo, A. E. and Siqueri, F. V. 1999. Evaluation of the efficiency of the use of copper oxychloride and a mixture of oxytetracycline + streptomycin sulfate to control angular leaf spot in cotton. Comun. Tecn. Embr. Algo. 105:3.
  6. Awasa Agricultural Research Center (ARCP). 2000. Progress Report 1999-2000.
  7. Bajpai, V. K., Dung, N. T., Suh, H. J. and Kang, S. C. 2010a. Antibacterial activity of essential oil and extracts of Cleistocalyx operculatus buds against the bacteria of Xanthomonas spp. J. Am. Oil Chem. Soc. 87:1341-1349. https://doi.org/10.1007/s11746-010-1623-9
  8. Bajpai, V. K., Cho, M. J. and Kang, S. C. 2010b. Control of plant pathogenic bacteria of Xanthomonas spp. by the essential oil and extracts of Metasequoia glyptostroboides Miki ex Hu in vitro and in vivo. J. Phytopathol. 158:479-486. https://doi.org/10.1111/j.1439-0434.2009.01646.x
  9. Bajpai, V. K., Rahman, A., Choi, U. K., Youn, S. J. and Kang, S. C. 2007. Inhibitory parameters of the essential oil and various extracts of Metasequoia glyptostroboides Miki ex Hu to reduce food spoilage and food-borne pathogens. Food Chem. 105:1061-1066. https://doi.org/10.1016/j.foodchem.2007.05.008
  10. Balestra, G. M., Heydari, A., Ceccarelli D., Ovidi, E. and Quattrucci, A. 2009. Antibacterial effect of Allium sativum and Ficus carica extracts on tomato bacterial pathogens. Crop Prot. 28:807-811. https://doi.org/10.1016/j.cropro.2009.06.004
  11. Basim, E. and Basim, H. 2003. Antibacterial activity of Rosa damascene essential oil. Fitoterapia 74:394-396. https://doi.org/10.1016/S0367-326X(03)00044-3
  12. Batlle, R., Colmsjo, A. and Nilsson, U. 2001. Determination of gaseous toluene diisocyanate by use of solid-phase microextraction with on-fiber derivatisation. Fresenius' J. Anal. Chem. 369:524-529. https://doi.org/10.1007/s002160000691
  13. Bauer, K. and Garbe, D. 1985. Common Fragrance and Flavor Materials. Preparation, Properties and Uses. VCH Verlagsgesellschaft, Weinheim, p. 213.
  14. Biavati, B., Ozcan, M. and Piccaglia, R. 2004. Composition and antimicrobial properties of Satureja cuneifolia Ten. and Thymbra sintenisii Bornm. Et Aznav. subsp. Isaurica P.H. Davis essential oils. Ann. Microbiol. 54:393-401.
  15. Boyle, W. 1955. Spices and essential oils as preservatives. Am. Perfu. Essen. Oil Rev. 66:25-28.
  16. Burt, S. A. 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94:223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  17. Burt, S. A. and Reinders, R. D. 2003. Antimicrobial activity selected plant essential oils against Escherichia coli O157:H7. Lett. Appl. Microbiol. 36:162-167. https://doi.org/10.1046/j.1472-765X.2003.01285.x
  18. Caccioni, D. R. L., Guizzardi, M., Biondi, D. M., Renda, A. and Ruberto, G. 1998. Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. Int. J. Food Microbiol. 43:73-79. https://doi.org/10.1016/S0168-1605(98)00099-3
  19. Cantore, P. I., Shanmugaiah, V. and Iacobellis, N. S. 2009. Antibacterial activity of essential oil components and their potential use in seed disinfection. J. Agric. Food Chem. 57:9454-9461. https://doi.org/10.1021/jf902333g
  20. Carson, C. F., Mee, B. J. and Riley, T. V. 2002. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage and salt tolerance assays and electron microscopy. Antimicrob. Agent Chemother. 46:1914-1920. https://doi.org/10.1128/AAC.46.6.1914-1920.2002
  21. Carson, C. F. and Riley, T. V. 1995. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J. Appl. Bacteriol. 78:264-269. https://doi.org/10.1111/j.1365-2672.1995.tb05025.x
  22. Carson, C. F. and Riley, T. V. 2001. Safety, efficacy and provenance of tea tree (Melaleuca alternifolia) oil. Cont. Dermat. 45:65-67. https://doi.org/10.1034/j.1600-0536.2001.045002065.x
  23. Cavalcanti, F. R., Resende, M. L. V., Carvalho, C. P. S., Silveira, J. A. G. and Oliveira, J. T. A. 2006. Induced defence responses and protective effects on tomato against Xanthomonas vesicatoria by an aqueous extract from Solanum lycocarpum infected with Crinipellis perniciosa. Biol. Cont. 39:408-417. https://doi.org/10.1016/j.biocontrol.2006.05.009
  24. Chen, Y. and Pawliszyn, J. 2003. Time-weighted average passive sampling with a solid-phase microextraction device. Anal. Chem. 75:2004-2010. https://doi.org/10.1021/ac026315+
  25. Claflin, L. 2003. Control of Pseudomonas syringae pathovars. In Pseudomonas syringae and Related Pathogens; Iacobellis, et al., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, pp. 423-430.
  26. Conner, D. E. 1993. Naturally occurring compounds. In: Davidson, P. & Branen, A. L. (Eds.). Antimicrobials in foods. New York, Marcel Dekker, Inc., pp. 441-468.
  27. Cooksey, D. A. 1990. Genetics of bactericide resistance in plant pathogenic bacteria. Annu. Rev. Phytopathol. 28:201-219. https://doi.org/10.1146/annurev.py.28.090190.001221
  28. Cox, S. D., Mann, C. M., Markham, J. L., Bell, H. C., Gustafson, J. E., Warmington, J. R. and Wyllie, S. G. 2000. The mode of antimicrobial action of essential oil of Melaleuca alternifola (tea tree oil). J. Appl. Microbiol. 88:170-175.
  29. Csizinszky, A. A., Civerolo, E. L. and Jones, J. B. 1993. Inactivation of Xanthomonas campestris pvs. in vitro with plant extracts. First world congress on medicinal and aromatic plants for human welfare (WOCMAP), Maastricht, Netherlands, 19−25 July 1992. Acta Hortic. 331:301-305.
  30. Dagnachew, Y. and Bradbury, J. F. 1968. Bacterial wilt of Enset (Enset ventricosum) incited by Xanthomonas campestris sp. Phytopathology 59:111-112.
  31. Dagnachew, Y. and Bradbury, J. F. 1974. A note on wilt of banana caused by enset wilt organism. Xanthomonas campestris. East Afr. Agric. Fores. J. 40:111-114.
  32. Dayakar, B. V. and Gnanamanickam, S. S. 1996. Biochemical and pathogenic variation in strains of Xanthomonas campestris pv. mangiferaeindicae from Southern India. Indian Phytopathol. 49:227-233.
  33. Deans, S. G. and Ritchie, G. 1987. Antibacterial properties of plant essential oils. Int. J. Food Microbiol. 5:165-180. https://doi.org/10.1016/0168-1605(87)90034-1
  34. Deena, M. J. and Thoppil, J. E. 2000. Antimicrobial activity of the essential oil of Lantana camara. Fitoterapia 71:453-455. https://doi.org/10.1016/S0367-326X(00)00140-4
  35. Dekker, J. 1987. The risks for development of fungicide resistance a worldwide problem. In: Magallona ED. (ed) Proceedings the 11th International Congress of Plant Protection, 5-7 October. Manila, Philippines, pp 318-321.
  36. Delaquis, P. J., Stanich, K., Girard, B. and Mazza, G. 2002. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 74:101-109. https://doi.org/10.1016/S0168-1605(01)00734-6
  37. Denyer, S. P. and Hugo, W. B. 1991. Biocide-induced damage to the bacterial cytoplasmic membrane. In: Denyer, S.P. and Hugo, W.B., Editors, 1991. Mechanisms of Action of Chemical Biocides. The Society for Applied Bacteriology, Technical Series No 27, Oxford Blackwell Scientific Publication, Oxford, pp. 171−188.
  38. Dereje, A. 1981. Studies on bacterial wilt of enset. Paper presented at the 13th National Crop Improvement Conference. Addis Ababa, Ethiopia. 23−25 March 1981. IAR, Ethiopia
  39. Dereje, A. 1985. Studies on the bacterial wilt of enset (Ensete ventricosum) and prospects for its control. Ethiop. J. Agric. Sci. 7:1-14.
  40. Didry, N., Dubreuil, L. and Pinkas, M. 1993. Activite antimicrobienne du thymol, du carvacrol et de l'aldehyde cinnamique seuls ou associes (Antibacterial activity of thymol, carvacrol, and cinnalmaldehyde singly or in combinations). Pharmazie 48:301-308.
  41. Dorman, H. J. D. and Deans, S. G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88:308-316. https://doi.org/10.1046/j.1365-2672.2000.00969.x
  42. Dung, N. T., Kim, J. M. and Kang, S. C. 2008. Chemical composition, antimicrobial and antioxidant activities of the essential oil and the ethanol extract of Cleistocalyx operculatus (Roxb.) Merr and Perry buds. Food Chem.Toxicol. 46:3632-3639. https://doi.org/10.1016/j.fct.2008.09.013
  43. Farag, R. S., Daw, Z. Y., Hewedi, F. M. and El-Baroty, G. S. A. 1989. Antimicrobial activity of some Egyptian spice essential oils. J. Food Prot. 52:665-667. https://doi.org/10.1016/j.fct.2008.09.013
  44. Franco, O. L., Murad, A. M., Leite, J. R., Mendes, P. A., Prates, M. V. and Bloch, C. 2006. Identification of a cowpea gammathionin with bactericidal activity. FEBS J. 273:3489-3497. https://doi.org/10.1111/j.1742-4658.2006.05349.x
  45. Gabriel, D. W. and De Feyter, R. 1992. RFLP analyses and gene tagging for bacterial identification and taxonomy. In: Molecular Plant Pathology. Vol.1, A Practical Approach. (S.J. Gurr, M.J. McPherson and D.J. Bowles, eds). IRL Press, Oxford. pp. 51-66. https://doi.org/10.1111/j.1742-4658.2006.05349.x
  46. Gan-Mor, S. and Matthews, G. A. 2003. Recent developments in sprayers for application of bio-pesticides - An Overview. Bios. Eng. 84:119-125. https://doi.org/10.1016/S1537-5110(02)00277-5
  47. Gent, D. H. and Schwartz, H. F. 2005. Management of Xanthomonas leaf blight of onion with a plant activator, biological control agents, and copper bactericides. Plant Dis. 89:631-639. https://doi.org/10.1094/PD-89-0631
  48. Guenther, E. 1948. The Essential Oils. D. Van Nostrand, New York. USA. https://doi.org/10.1094/PD-89-0631
  49. Gustafson, J. E., Liew, Y. C., Chew, S., Markham, J. L., Bell, H. C., Wyllie, S. G. and Warmington, J. R. (1998. Effects of tea tree oil on Escherichia coli. Lett. Appl. Microbiol. 26:194-198. https://doi.org/10.1046/j.1472-765X.1998.00317.x
  50. Gyorgyi Horváth, G., Szabo, L. G., Lemberkovics, E., Botz, L. and Kocsis, B. 2004. Characterization and TLC-bioautographic detection of essential oils from some Thymus taxa. Determination of the activity of the oils and their components against plant pathogenic bacteria. J. Planar Chromatogr. - Modern TLC. 17:300-304. https://doi.org/10.1556/JPC.17.2004.4.11
  51. Hayward, A. C. 1993. The host of Xanthomonas. In: Xanthomonas; pp. 51-54. J.G. Swings and E.L. Civerolo (eds.); Chapman & Hall, London, United Kingdom. https://doi.org/10.1556/JPC.17.2004.4.11
  52. Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., Gorris, L. G. M. and von Wright, A. 1998. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem. 46:3590-3595. https://doi.org/10.1021/jf980154m
  53. Hevesi, M., Al-arabi, K., Gondor, M., Papp, J., Honty, K., Kasa, K. and Toth, M. 2006. Development of eco-friendly strategies for the control of fire blight in Hungry. International Society for Horticultural Science, ISHS Acta Horticulturae 704: X International Workshop on Fire Blight, Bologna, Italy. https://doi.org/10.1021/jf980154m
  54. Holley, R. A. and Patel, D. 2005. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 22:273-292. https://doi.org/10.1016/j.fm.2004.08.006
  55. Hugouvieux, V., Barber, C. E. and Daniels, M. J. 1998. Entry of Xanthomonas campestris pv. campestris into hydathodes of Arabidopsis thaliana leaves: a system for studying early infection events in bacterial pathogenesis. Mol. Plant-Microbe Interact. 11:537-543. https://doi.org/10.1094/MPMI.1998.11.6.537
  56. Hwang, I. and. Lim, S. M. 1998. Pathogenic variability in isolates of Xanthomonas campestris pv. glycines. Kor. J. Plant Pathol. 14:19-22. https://doi.org/10.1094/MPMI.1998.11.6.537
  57. Iacobellis, N. S., Cantore, P. L., Capasso, F. and Senatores, F. 2005. Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J. Agric. Food Chem. 53:57-61. https://doi.org/10.1021/jf0487351
  58. Ilsley, S., Miller, H., Greathead, H. and Kamel, C. 2002. Herbal sow diets boost pre-weaning growth. Pig Prog. 18:8-10. https://doi.org/10.1021/jf0487351
  59. Isman, M. B. 2010. Aromatherapy for pest management? Pesticide based on plant essential oils for agriculture, industry and as consumer. University of British Columbia, Vancouver, Canada.
  60. Ji, G. H., Wei, L. F., He, Y. Q., Wu, Y. P. and Bai, X. H. 2008. Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biol. Cont. 45:288-296. https://doi.org/10.1016/j.biocontrol.2008.01.004
  61. Juliano, C., Mattana, A. and Usai, M. 2000. Composition and in vitro antimicrobial activity of the essential oil of Thymus herba-barona Loisel growing wild in Sardinia. J. Essen. Oil Res. 12:516-522. https://doi.org/10.1016/j.biocontrol.2008.01.004
  62. Juven, B. J., Kanner, J., Schved, F. and Weisslowicz, H. 1994. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol. 76:626-631. https://doi.org/10.1111/j.1365-2672.1994.tb01661.x
  63. Khare, U. K. and Khare, M. N. 1995. Studies on survival of Xanthomonas campestris pv. glycines. Indian Phytopathol. 48:180-181. https://doi.org/10.1111/j.1365-2672.1994.tb01661.x
  64. Kim, J., Marshall, M. R. and Wei, C. I. 1995. Antibacterial activity of some essential oil components against five foodborne pathogens. J. Agric. Food Chem. 43:2839-2845. https://doi.org/10.1021/jf00059a013
  65. Kivillan, A. and Scheffer, R. P. 1958. Factors affecting development of bacterial stem rot of Pelargonium. Phytopathology 48:185-191. https://doi.org/10.1021/jf00059a013
  66. Knobloch, K., Weigand, H., Weis, N., Schwarm, H. M. and Vigenschow, H. 1986. Action of terpenoids on energy metabolism. In: Brunke, E.J., Editor, 1986. Progress in Essential Oil Research: 16th International Symposium on Essential Oils, De Gruyter, Berlin, pp. 429-445.
  67. Knobloch, K., Pauli, A., Iberl, B., Weigand, H. and Weis, N. 1989. Antibacterial and antifungal properties of essential oil components. J. Essen. Oil Res. 1:119-128. https://doi.org/10.1080/10412905.1989.9697767
  68. Kotan, R., Dadasoglu, F., Kordali, S. Cak r, A., Dikbas, N. and Cakmakc , R. 2007. Antibacterial activity of essential oils extracted from some medicinal plants, carvacrol and thymol on Xanthomonas axonopodis pv. vesicatoria (Doidge) Dye causes bacterial spot disease on pepper and tomato. J. Agric. Technol. 12:299-306.
  69. Lambert, R. J. W., Skandamis, P. N., Coote, P. and Nychas, G. J. E. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91:453-462. https://doi.org/10.1046/j.1365-2672.2001.01428.x
  70. Lenka, S. and Ram, S. 1997. A note on the efficacy in vivo of various antibiotics and fungicide chemicals against Xanthomonas campestris pv. campestris causing black rot of cauliflower. Ori. J. Hortic. 25:90-92. https://doi.org/10.1046/j.1365-2672.2001.01428.x
  71. Leyns, F., De Cleene, M., Swings, J. and De Ley, J. 1984. Bot. Rev. 50:308-356. https://doi.org/10.1007/BF02862635
  72. Longbottom, C. J., Carson, C. F., Hammer, K. A., Mee, B. J. and Riley, T. V. 2004. Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes. J. Antimicrob. Chemother. 54:386-392. https://doi.org/10.1093/jac/dkh359
  73. Lopez, P., Sanchez, C., Battle, R. and Nerin, C. 2005. Solid- and vapor-phase antimicrobial activities of six essential oils: susceptibility of selected foodborne bacterial and fungal strains. J. Agric. Food Chem. 53:6939-6946. https://doi.org/10.1021/jf050709v
  74. Mahmoud, S. S. and Croteau, R. B. 2002. Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci. 7:366-373. https://doi.org/10.1016/S1360-1385(02)02303-8
  75. Maiti, D., Kole, R. C. and Sen, C. 1985. Antimicrobial efficacy of some essential oils. J. Plant Dis. Prot. 92:64-68. https://doi.org/10.1016/S1360-1385(02)02303-8
  76. Manners, J. G. 1993. Principles of Plant Pathology. 2nd ed. Cambridge University Press.
  77. Maruzzella, J. C., Reine, S., Solat, H. and Zeitlin, H. 1963. The action of essential oils on phytopathogenic bacteria. Plant Dis. Rep. 47:23-26.
  78. Massomo, S. M. S., Mortensen, C. N., Mabagala, R. B., Newman, M. A. and Hockenhull, J. 2004. Biological control of black rot (Xanthomonas campestris pv. campestris) of cabbage in Tanzania with Bacillus strains. J. Phytopathol. 152:98-195. https://doi.org/10.1111/j.1439-0434.2003.00808.x
  79. McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443-465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
  80. Mejlholm, O. and Dalgaard, P. 2002. Antimicrobial effect of essential oils on the seafood spoilage micro-organism Photobacterium phosphoreum in liquid media and fish products. Lett. Appl. Microbiol. 34:27-31. https://doi.org/10.1046/j.1472-765x.2002.01033.x
  81. Minsavage, G. V., Canteros, B. I. and Stall, R. E. 1990. Plasmidmediated resistance to streptomycin in Xanthomonas campestris pv. vesicatoria. Phytopathology 80:719-723. https://doi.org/10.1094/Phyto-80-719
  82. Miyazawa, M., Maehara, T. and Kurose, K. 2002. Composition of the essential oil from the leaves of Eruca sativa. Flavour Fragr. J. 17:187-190. https://doi.org/10.1002/ffj.1079
  83. Montesinos, E. 2007. Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett. 270:1-11. https://doi.org/10.1111/j.1574-6968.2007.00683.x
  84. Morris, J. A., Khettry, A. and Seitz, E. W. 1979. Antimicrobial activity of aroma chemicals and essential oils. J. Am. Oil Chem. Soc. 56:595-603. https://doi.org/10.1007/BF02660245
  85. Mourey, A. and Canillac, N. 2002. Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control 13: 289-292. https://doi.org/10.1016/S0956-7135(02)00026-9
  86. Munnecke, E. 1954. Bacterial stem rot and leaf spot of Pelargonium. Phytopathology 33:626-632. https://doi.org/10.1016/S0956-7135(02)00026-9
  87. Nguefack, J., Somda, I., Mortensen, C. N. and Amvam Zollo, P. H. 2005. Evaluation of five essential oils from aromatic plants of Cameroon for controlling seed-borne bacteria of rice (Oryza sativa L.). Seed Sci. Technol. 33:397-407. https://doi.org/10.15258/sst.2005.33.2.12
  88. Norman, D. J., Chase, A. R., Stall, R. E. and Jones, J. B. 1999. Heterogenity of Xanthomonas campestris pv. hederae strains from araliaceous hosts. Phytopathology 89:646-652. https://doi.org/10.1094/PHYTO.1999.89.8.646
  89. Oosterhaven, K., Poolman, B. and Smid, E. J. 1995. S-carvone as a natural potato sprout inhibiting, fungistatic and bacteristatic compound. Ind. Crop. Prod. 4:23-31. https://doi.org/10.1016/0926-6690(95)00007-Y
  90. Ornek, H., Aysan, Y., Mirik, M. and Sahin F. 2007. First report of bacterial leaf spot caused by Xanthomonas axonopodis pv. begoniae, on begonia in Turkey. Plant Pathol. 56:347-352. https://doi.org/10.1016/0926-6690(95)00007-Y
  91. Oussalah, M., Caillet, S. and Lacroix, M. 2006. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory oils against cell membrane and walls of Escherichia coli O157:H7 and Listeria monocytogenes, J. Food Prot. 69:1046-1055. https://doi.org/10.4315/0362-028X-69.5.1046
  92. Ozturk, S. and Ercisli, S. 2007. Antibacterial activity and chemical constitutions of Ziziphora clinopodioides. Food Cont. 18:535-540. https://doi.org/10.1016/j.foodcont.2006.01.002
  93. Paranagama, P. A., Abeysekera, K. H. T., Abeywickrama, K. and Nugaliyadd, L. 2003. Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (lemongrass) against Aspergillus flavus Link isolated from stored rice. Lett. Appl. Microbiol. 37:86-90. https://doi.org/10.1046/j.1472-765X.2003.01351.x
  94. Paster, N., Menasherov, M., Ravid, U. and Juven, B. 1995. Antifungal activity of oregano and thyme essential oils applied as fumigants against fungi attacking stored grain. J. Food Prot. 58:81-85. https://doi.org/10.1046/j.1472-765X.2003.01351.x
  95. Patil, M. R. and Ghoderao, B. N. 1997. Evaluation of Some medicinal and aromatic plants against cotton bacterial blight infection. PKV Res. J. 21:179.
  96. Pichersky, E., Noel, J. P. and Dudareva, N. 2006. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science, 311, 808-811. https://doi.org/10.1126/science.1118510
  97. Pruvost, O., Couteau, A., Perrier, X. and Luisetti, J. 1998. Phenotypic diversity of Xanthomonas sp. mangiferaeindicae. J. Appl. Microbiol. 84:115-124. https://doi.org/10.1046/j.1365-2672.1997.00328.x
  98. Quimio, J. A. and Mesfin, T. 1996. Diseases of Enset. In: Ensetbased Sustainable agriculture in Ethiopia (Tsedeke Abate, Clifton Hiebsch and Steve Brandt eds.). Proceedings of the First international workshop on Enset. Dec 13−21 1993. IAR, Addis Ababa, Ethiopia. pp.188-203. https://doi.org/10.1046/j.1365-2672.1997.00328.x
  99. Rasooli, I., Rezaei, M. B. and Allameh, A. 2006. Ultrastructural studies on antimicrobial efficacy of thyme essential oils on Listeria monocytogenes. Int. J. Inf. Dis. 10:236-241. https://doi.org/10.1016/j.ijid.2005.05.006
  100. Raybaudi-Massilia, R. M., Mosqueda-Melgar, J. and Martín-Belloso, O. 2006. Antimicrobial activity of essential oils on Salmonella Enteritidis, Escherichia coli, and Listeria innocua in fruit Juices. J. Food Prot. 69:1579-1586. https://doi.org/10.1016/j.ijid.2005.05.006
  101. Ray, P. R. and Sengupta, T. K. 1970. A study on the extent of loss in yield in rice due to bacterial blight. Indian Phytopathol. 23:713-714.
  102. Restrepo, S., Velez, C. M. and Verdier, V. 2000. Measuring the genetic diversity of Xanthomonas axonopodis pv. manihotis within different fields in Colombia. Phytopathology 90:683-690. https://doi.org/10.1094/PHYTO.2000.90.7.683
  103. Rodriguez, H., Aguilar, L. and LaO, M. 1997. Variations in xanthan production by antibiotic-resistant mutants of Xanthomonas campestris. Appl. Microbiol. Biotechnol. 48:626-629. https://doi.org/10.1007/s002530051106
  104. Salamci, E., Kordali, S., Kotan, R., Cak r, A. and Kaya, Y. 2007. Chemical compositions, antimicrobial and herbicidal effects of essential oils isolated from Turkish Tanacetum aucheranum and Tanacetum chiliophyllum var. chiliophyllum. Biochem. Syst. Ecol. 35:569-581. https://doi.org/10.1016/j.bse.2007.03.012
  105. Salgueiro, L. R., Vila, R., Tomi, F., Figueiredo, A. C., Barroso, J. G. and Canigueral, S. 1997. Variability of essential oils of Thymus caespititius from Portugal. Phytochemistry 45:307-311. https://doi.org/10.1016/S0031-9422(96)00872-2
  106. Satish, S., Raveesha, K. A. and Janardhana, G. R. 1999. Antibacterial activity of plant extracts on phytopathogenic Xanthomonas campestris pathovars. Lett. App. Microbiol. 28:145-147. https://doi.org/10.1046/j.1365-2672.1999.00479.x
  107. Savary, S., Teng, P. S., Willocquet, L. and Nutter, F. W. 2006. Quantification and modeling of crop losses: a review of purposes. Annu. Rev. Phytopathol. 44:89-112. https://doi.org/10.1146/annurev.phyto.44.070505.143342
  108. Shelef, L. A. 1983. Antimicrobial effects of spices. J. Food Safety 6:29-44. https://doi.org/10.1146/annurev.phyto.44.070505.143342
  109. Skkema, J., De Bont, J. A. M. and Poolman, B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59:201-222.
  110. Skandamis, P. N. and Nychas, G. J. E. 2001. Effect of oregano essential oil on microbiological and physico-chemical attributes of minced meat stored in air and modified atmospheres. J. Appl. Microbiol. 91:1011-1022. https://doi.org/10.1046/j.1365-2672.2001.01467.x
  111. Smid, E. J. and Gorris, L. G. M. 1999. Natural antimicrobials for food preservation. In: Rahman, M.S. (Ed.), Handbook of Food Preservation. Marcel Dekker, New York, pp. 285-308. https://doi.org/10.1046/j.1365-2672.2001.01467.x
  112. Smoley, C. K. 1993. U.S. Food and Drug Administration. Everything Added to Food in the United States. CRC Press, Inc., Boca Raton, FL.
  113. Sokmen, A., Gulluce, M., Askin Akpulat, H., Daferera, D., Tepe, B., Polissiou, M., Sokmen, M. and Sahin, F. 2004. The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius. Food Cont. 15:627-634. https://doi.org/10.1016/j.foodcont.2003.10.005
  114. Spring, A., Hiebsch, C., Endale, T. and Gizachew, W. M. 1996. Enset needs assessment project phase I Report. Awasa, Ethiopia.
  115. Sugimori, M. H. and De-Oliveira, A. R. 1994. Serological characterization of white pathovars of Xanthomonas campestris. Summa Phytopathol. 20:168-170.
  116. Talwar, M., Kumar, P. and Saxena, S. C. 1996. Evaluation of chemicals including antibiotics against Xanthomonas campestris Pv. mangiferaeindicae, the bacterial canker pathogen of mango. Adv. Plant Sci. 9:235-237.
  117. Thammaiah, N., Khan, A. and John, E. 1995. Effect of extract from Adhatoda zeylanica on Xanthomonas campestris pv. viginicola causing bacterial blight of cowpea. Adv. Agric. Res. India 4:109-117.
  118. Thaveechai, N., Leksomboon, C., Kositratana, W., Paradornutiwat, A. and Rojanaridpiched, C. 1993. Survival of Xanthomonas campestris pv. manihotis under natural field conditions. Kasetsart J. Nat. Sci. 27:25-32.
  119. Tobias, A., Lehoczki-Tornai, J., Szalai, Z., Csambalik, L. and Radics, L. 2007. Effect of different treatments to bacterial canker (Clavibacter michiganensis subsp. michiganensis), bacterial speck (Pseudomonas syringae pv. tomato) in tomato, and bacterial spot (Xanthomonas campestris pv. vesicatoria) in pepper. Int. J. Horti. Sci. 13:49-53.
  120. Tuley de Silva, K. 1996. A Manual on the Essential Oil Industry. (Ed.), United Nations Industrial Development Organization, Vienna.
  121. Ultee, A., Bennink, M. H. J. and Moezelaar, R. 2002. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 68:1561-1568. https://doi.org/10.1128/AEM.68.4.1561-1568.2002
  122. Van Welie, R. T. H. 1997. Alle cosmetica ingrediënten en hun functies. Nederlandse Cosmetica Vereniging, Nieuwegein, p. 126. https://doi.org/10.1128/AEM.68.4.1561-1568.2002
  123. Van de Braak, S. A. A. J. and Leijten, G. C. J. J. 1999. Essential Oils and Oleoresins: A Survey in the Netherlands and other Major Markets in the European Union. CBI, Centre for the Promotion of Imports from Developing Countries, Rotterdam, p. 116.
  124. Van Krimpen, M. M. and Binnendijk, G. P. 2001. RopadiarR as alternative for antimicrobial growth promoter in diets of weanling pigs. Lelystad, Praktijkonderzoek Veehouderij, p. 14.
  125. Vasinauskiene, M., Radusiene, J., Zitikaite, I. and Surviliene E. 2006. Antibacterial activities of essential oil from aromatic and medicinal plants against growth of phytopathogenic bacteria. Agro. Res. 4:437-440.
  126. Veracruz, C. M., Ardales, E. Y., Skinner, D. Z., Talag, J., Nelson, R. J., Louws, F. J., Leung, H., Mew, T. W. and Leach, J. E. 1996. Measurement of haplotypic variation in Xanthomonas oryzae pv. oryzae within a single field by rep-PCR and RFLP analyses. Phytopathology 86:1352-1359.
  127. Wendakoon, C. N. and Sakaguchi, M. 1995. Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spices. J. Food Prot. 58:280-283. https://doi.org/10.4315/0362-028X-58.3.280
  128. Wells, J. M., Liao, C. and Hotchkiss, A. T. 1998. In vitro inhibition of soft-rotting bacteria by EDTA and nisin and in vivo response on inoculated fresh cut carrots. Plant Dis. 82:491-495. https://doi.org/10.1094/PDIS.1998.82.5.491
  129. Zanellato, M., Masciarelli, E., Casorri, L., Boccia, P., Sturchio, E., Pezzella, M., Cavalieri, A. and Caporali, F. 2009. The essential oils in agriculture as an alternative strategy to herbicides: a case study. Int. J. Environ. Health 3:198-213. https://doi.org/10.1094/PDIS.1998.82.5.491

Cited by

  1. Antibacterial effects of Origanum onites against phytopathogenic bacteria: Possible use of the extracts from protection of disease caused by some phytopathogenic bacteria vol.172, 2014, https://doi.org/10.1016/j.scienta.2014.03.016
  2. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene vol.253, pp.3, 2016, https://doi.org/10.1007/s00709-015-0904-4
  3. Application of Volatile Antifungal Plant Essential Oils for Controlling Pepper Fruit Anthracnose by Colletotrichum gloeosporioides vol.31, pp.3, 2015, https://doi.org/10.5423/PPJ.OA.03.2015.0027
  4. Emulsions of essential oils and aloe polysaccharides: Antimicrobial activity and resistance inducer potential against Xanthomonas fragariae vol.42, pp.5, 2017, https://doi.org/10.1007/s40858-017-0153-5
  5. Essential Oils and Antifungal Activity vol.10, pp.4, 2017, https://doi.org/10.3390/ph10040086
  6. Essential Oil and Its Potential Use as Bioherbicide vol.15, pp.8, 2018, https://doi.org/10.1002/cbdv.201800202
  7. pp.2150-1211, 2018, https://doi.org/10.1080/21501203.2018.1481154
  8. Chemical composition and herbicidal activity of essential oils from two Labiatae species from Algeria pp.2163-8152, 2019, https://doi.org/10.1080/10412905.2019.1567400