Browse > Article
http://dx.doi.org/10.4014/jmb.1004.04037

Antimicrobial Activities of 1,4-Benzoquinones and Wheat Germ Extract  

Kim, Myung-Hee (Department of Food and Nutrition, Hannam University)
Jo, Sung-Hoon (Department of Food and Nutrition, Hannam University)
Ha, Kyoung-Soo (Department of Food and Nutrition, Hannam University)
Song, Ji-Hye (Department of Food and Nutrition, Hannam University)
Jang, Hae-Dong (Department of Food and Nutrition, Hannam University)
Kwon, Young-In (Department of Food and Nutrition, Hannam University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.8, 2010 , pp. 1204-1209 More about this Journal
Abstract
We evaluated the antibacterial activities of selected edible Korean plant seeds against the food-borne pathogens Staphylococcus aureus KCTC1927, Escherichia coli KCTC2593, Salmonella typhimurium KCTC2054, and Bacillus cereus KCTC1014. While screening for antibacterial agents, we discovered that wheat germ extract contains 2,6-dimethoxy-1,4-benzoquinone (DMBQ) and is highly inhibitory to S. aureus and B. cereus. This is the first report of the antibacterial activity of wheat germ extract. We also investigated the antibacterial activities of the 1,4-benzoquinone standards 1,4-benzoquinone (BQ), hydroquinone (HQ), methoxybenzoquinone (MBQ), and 2,6-dimethoxy-1,4-benzoquinone (DMBQ). DMBQ and BQ were the most highly inhibitory to S. aureus and S. typhimurium, followed by MBQ and HQ. MICs for DMBQ and BQ ranged between 8 and 64 ${\mu}g/ml$ against the four foodborne pathogens tested. DMBQ and BQ showed significant antibacterial activity; the most sensitive organism was S. aureus with an MIC of 8 ${\mu}g/ml$. BQ exhibited good activity against S. typhimurium (32 ${\mu}g/ml$) and B. cereus (32 ${\mu}g/ml$). The results suggest that wheat germ extract has potential for the development of natural antimicrobials and food preservatives for controlling foodborne pathogens.
Keywords
Antibacterials; benzoquinone; foodborne pathogens; MIC; wheat germ;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Tegos, G., F. R. Stermitz, O. Lomovskaya, and K. Lewis. 2002. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother. 46: 3133-3141.   DOI   ScienceOn
2 Tomoskozi-Farkas, R. and H. G. Daood. 2004. Modification of chromatographic method for the determination of benzoquinones in cereal products. Chromatogr. Suppl. 60: 227-230.
3 Pardee, A. B., Y. Z. Li, and C. J. Li. 2002. Cancer therapy with beta-lapachone. Cancer Drug Targets 2: 227-242.   DOI   ScienceOn
4 Pethig, R., P. R. C. Gascoyne, J. A. McLaughlin, and A. Szent- Gyorgyi. 1983. Ascorbate-quinone interactions: Electrochemical, free radical, and cytotoxic properties. Proc. Natl. Acad. Sci. U.S.A. 80: 129-132.   DOI   ScienceOn
5 Pethig, R., P. R. C. Gascoyne, J. A. McLaughlin, and A. Szent- Gyorgyi. 1985. Enzyme-controlled scavenging of ascorbyl and 2,6-dimethoxysemiquinone free radicals in Ehrlich ascites tumor cells. Proc. Natl. Acad. Sci. U.S.A. 82:1439-1442.   DOI   ScienceOn
6 Powers, K. A., M. S. Terpenning, R. A. Voice, and C. A. Kauffman. 1990. Prosthetic joint infections in the elderly. Am. J. Med. 88: 9-13.   DOI   ScienceOn
7 Qabaja, G., E. M. Perchellet, J. P. Perchellet, and G. B. Jones. 2000. Regioselective lactonization of naphthoquinones: Synthesis and antitumoral activity of the WS-5995 antibiotics. Tetrahedron Lett. 41: 3007-3010.   DOI   ScienceOn
8 Seung, S. A., J. Y. Lee, M. Y. Lee, J. S. Park, and J. H. Chung. 1998. The relative importance of oxidative stress versus arylation in the mechanism of quinone-induced cytotoxicity to platelets. Chem. Biol. Interact. 113: 133-144.   DOI   ScienceOn
9 Shetty, K. and Y. T. Lin. 2005. Phenolic antimicrobials from plants for control of bacterial pathogens, pp. 1481-1505. In K. Shetty, G. Paliyath, A. L. Pometto, and R. E. Levin (eds.). Food Biotechnology. CRC Press, Boca Raton.
10 Monks, T. J., R. P. Hanzlik, G. M. Cohen, D. Ross, and D. G. Graham. 1992. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol. 112: 2-16.   DOI   ScienceOn
11 Lana, E. J. L., F. Carazza, and J. A. Takahashi. 2006. Antibacterial evaluation of 1,4-benzoquinone derivatives. J. Agric. Food Chem. 54: 2053-2056.   DOI   ScienceOn
12 Morel, C., F. R. Stermitz, G. Tegos, and K. Lewis. 2003. Isoflavones as potentiators of antibacterial activity. J. Agric. Food Chem. 51: 5677-5679.   DOI   ScienceOn
13 Muhammad, I., S. Takamatsu, L. A. Walker, J. S. Mossa, H. H. S. Fong, and F. S. El-Feraly. 2003. Cytotoxic and antioxidant activities of alkylated benzoquinones from Maesa lanceolata. Phytother. Res. 17: 887-891.   DOI   ScienceOn
14 Nohl, H., W. Jordan, and R. I. Youngman. 1986. Quinones in biology: Functions in electron transfer and oxygen activation. Adv. Free Rad. Biol. Med. 2: 211-279.   DOI   ScienceOn
15 Koyama, J. 2006. Anti-infective quinone derivatives of recent patents. Recent Patents on Anti-Infect. Drug Discov. 1: 113-125.   DOI   ScienceOn
16 Lechner, D., M. Stavri, M. Oluwatuyi, R. Pereda-Miranda, and S. Gibbons. 2004. The anti-staphylococcal activity of Angelica dahurica (Bai Zhi). Phytochemistry 64: 331-335.
17 Lin, Y. T., Y. I. Kwon, R. G. Labbe, and K. Shetty. 2005. Inhibition of Helicobacter pylori and associated urease by oregano and cranberry phytochemical synergies. Appl. Environ. Microbiol. 71: 8558-8564.   DOI   ScienceOn
18 Meganathan, R. 2001. Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): A perspective on enzymatic mechanisms. Vitam. Horm. 61: 173-218.   DOI
19 Laatsch, H. 1994. Conocurvone prototype of a new class of anti-HIV active compounds. Angew. Chem. Int. Ed. Engl. 33: 422-424.   DOI   ScienceOn
20 Kubo, I. and K. Fujita. 2001. Naturally occurring anti-Salmonella agents. J. Agric. Food Chem. 49: 5750-5754.   DOI   ScienceOn
21 Kloos, W. E. and T. L. Bannerman. 1999. Staphylococcus and Micrococcus, pp. 264-282. In P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken (eds.). Manual of Clinical Microbiology. ASM Press, Washington, DC.
22 Gant, T. W., D. N. R. Rao, R. P. Mason, and G. M. Cohen. 1988. Redox cycling and sulfhydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Chem. Biol. Interact. 65: 157-173.   DOI   ScienceOn
23 Iandolo, J. J. 1989. Genetic analysis of extracellular toxins of Staphylococcus aureus. Annu. Rev. Microbiol. 43: 375-402.   DOI   ScienceOn
24 Kersten, W. 1971. Inhibition of RNA synthesis by quinone antibiotics. Prog. Mol. Subcell. Biol. 2: 48-57.
25 Bauer, A. W., W. M. Kirby, J. C. Sherris, and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45: 493-496.   DOI
26 Babich, H. and A. Stern. 1993. In-vitro cytotoxicities of 1,4- naphthoquinone and hydroxylated 1,4-naphthoquinones to replicating cells. J. Appl. Toxicol. 13: 353-358.   DOI   ScienceOn
27 Christoph, M. S., P. Klaus, W. Annette, S. Erwin, and J. C. Simon. 1999. Antibacterial activity of hyperforin from St. John's wort, against multiresistant Staphylococcus aureus and Grampositive bacteria. Lancet 353: 2129-2131.
28 Djipa, C., M. Delmee, and J. Quetin. 2000. Antimicrobial activity of bark extracts of Syzygium jambos. J. Ethnopharmacol. 71: 307-313.   DOI   ScienceOn
29 Drewes, S. E., F. Khan, S. F. V. Vuuren, and A. M. Viljoen. 2005. Simple 1,4-benzoquinones with antibacterial activity from stems and leaves of Gunnera perpensa. Phytochemistry 66: 1812-1816.   DOI   ScienceOn