• Title/Summary/Keyword: natural antimicrobial

Search Result 919, Processing Time 0.032 seconds

Synergistic Antimicrobial Effect of Lonicera japonica and Magnolia obovata Extracts and Potential as a Plant-Derived Natural Preservative

  • Lee, Ye Seul;Lee, Yun Ju;Park, Soo Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1814-1822
    • /
    • 2018
  • Most people use cosmetics to protect their skin. Preservatives are often used to prevent their contamination upon use. There has been a great demand for natural preservatives due to recent reports on the side effects of parabens. Therefore, we evaluated the antimicrobial activities of Lonicera japonica and Magnolia obovata extracts and determined their potential as natural preservatives. We found that the 50% ethanol extract from L. japonica had antibacterial activity only against S. aureus and P. aeruginosa, while the ethyl acetate fraction showed antimicrobial activity against all six microbial strains tested. On the other hand, the 70% ethanol extract and the ethyl acetate fraction from M. obovata showed antimicrobial activity against all six strains. A synergistic effect against S. aureus, B. subtilis, and C. albicans was confirmed when two ethyl acetate fractions having antimicrobial activity against all six strains were used in combination. Synergistic activity against B. subtilis was also confirmed through kill-time analysis. High-performance liquid chromatography was performed to identify the components of each extract. Based on the minimum inhibitory concentration and the results of a disc diffusion assay, we confirmed that caffeic acid and luteolin influenced the antimicrobial activity of L. japonica and that the antimicrobial activity of M. obovata was influenced by the interaction of magnolol and honokiol with other components. Therefore, this study suggests that the combination of L. japonica and M. obovata extracts may be used as a plant-derived natural preservative.

Study of Effectiveness of Antimicrobial on Restraining Formation of Biofilms on the Surface of Aluminum (항균제를 이용한 알루미늄 표면에 생물막 형성 억제효과 분석)

  • Park, SangJun;Oh, YoungHwan;Jo, BoYeon;Choi, MiYeon;Hyun, MinWoo;Jeong, JaeHyun;Kim, EuiYong
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.69-76
    • /
    • 2015
  • The antibacterial activity of a antimicrobial (organic synthetic or organic natural material) on the bacteria (Bacillus megaterium, Arthrobacter oxydans, Micrococcus luteus, Methylobacterium aquaticum) detected in the automobiles showed 99.9% bacteria decrease rate within 30 min of being in contact with the tested bacteria culture. The MIC of the organic synthetic material based antimicrobials and the organic natural material based antimicrobial on the bacteria were 31~500 mg/mL and 8~250 mg/mL, respectively. The bacteria and biofilms were formed on the surface of aluminum after 5 ~8 days in the case of addition of the organic synthetic material based antimicrobial to the MIC values for the tested bacteria culture. On the other hand, there was no proliferation of bacteria and formation of biofilms on the surface of aluminum even after 30 days in the case of addition of the organic natural material based antimicrobial to the MIC values for the tested bacteria culture. As a result, the organic natural material based antimicrobial was confirmed to be more excellent effect of inhibition of bacterial proliferation and restraint of biofilms formation than the organic synthetic material based antimicrobial.

Antibacterial Effects of Salt with Natural Antimicrobial Substances against Foodborne Pathogens (천연 항균물질이 첨가된 소금의 식중독 세균에 대한 항균효과)

  • Hyun, Jeong-Eun;Park, Se-Eun;Lee, Seo-Hyeon;Lee, Yeon-Jin;Jang, Min-Kyung;Moon, Sung-Kwon;Lee, Sun-Young
    • Journal of the FoodService Safety
    • /
    • v.1 no.1
    • /
    • pp.27-35
    • /
    • 2020
  • Salt is a common seasoning agent used in various processed foods, especially in kimchi and salted seafood (jeotgal). This study was conducted to investigate the efficacy of salt with antimicrobial substances (acetic acid, garlic extract, carvacrol, nisin, thymol, and their combination (acetic acid+nisin+thymol)) on improvement of antibacterial effects of salt against foodborne pathogens. Salt (10%) was prepared using six different types of 0.2% natural antimicrobial substances. The antibacterial effect of salt combined with natural antimicrobial substances was evaluated against foodborne pathogens using the broth micro-dilution method and growth curve plotted using absorbance measurements. For the five foodborne pathogens, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of salt without antimicrobial substances as control were in the range of 24~>50,000 ㎍/mL and >50,000 ㎍/mL, respectively. Salt with nisin, thymol, or garlic extract showed strong inhibitory effects and their MIC against L. monocytogenes were 49, 12,500, and 24 ㎍/mL, respectively. In particular, salt with nisin showed inhibitory activities against Gram-positive bacteria. However, all the antimicrobial substances were less effective against Gram-negative bacteria such as E. coli O157:H7 and S. Typhimurium than Gram-positive bacteria. These results could be used for the development of salt with natural antimicrobial substances especially targeted against L. monocytogenes. This would enable the lowering of saline concentration while improving the storability of food.

Antimicrobial Activity of Antimicrobial Peptide LPcin-YK3 Derived from Bovine Lactophoricin

  • Kim, Ji-Sun;Jeong, Ji-Ho;Cho, Jang-Hee;Lee, Dong-Hee;Kim, Yongae
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1299-1309
    • /
    • 2018
  • We previously reported on lactophoricin (LPcin), a cationic ${\alpha}-helical$ antimicrobial peptide derived from bovine milk, which has antimicrobial effects on Candida albicans as well as Gram-positive and Gram-negative bacteria. In this study, we designed the LPcin-YK3 peptide, a shorter analog of LPcin, and investigated its antimicrobial activity. This peptide, consisting of 15 amino acids with + 3 net charges, was an effective antimicrobial agent against the on the Gram-positive strain, Staphylococcus aureus (MIC: $0.62{\mu}g/ml$). In addition, the hemolytic activity assay revealed that the peptide was not toxic to mouse and human erythrocytes up to $40{\mu}g/ml$. We also used circular dichroism spectroscopy to confirm that peptide in the presence of lipid has ${\alpha}-helical$ structures and later provide an overview of the relationship between each structure and antimicrobial activity. This peptide is a member of a new class of antimicrobial agents that could potentially overcome the problem of bacterial resistance caused by overuse of conventional antibiotics. Therefore, it could be used as a therapeutic or natural additive, particularly in the cosmetics industry.

Antimicrobial and Antioxidative Activities of Cornis fructus Extracts

  • Chun, Hyun-Ja;Choi, Won-Hyung;Lee, Jeong-Ho;Lee, In-A;Lee, Ji-Su;Baek, Seung-Hwa
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.139.2-140
    • /
    • 2003
  • Tannin-rich fruit of Cornus officinalis Sieb. et Zucc has been used as an ingredient in several prescriptions of Oriental medicine. Cornis fructus was extracted by successive extraction. Cornis fructus extracts were investigated for antimicrobial and antioxidative activities. Antimicrobial effects used disk diffusion method. All extracts were examined against Streptococcus mutans. (omitted)

  • PDF

A Study on the Antimicrobial Effect of Natural Artemisia Extract using Super Critical Carbon Dioxide (초임계 이산화탄소를 이용한 쑥 추출물의 항균효과에 관한 연구)

  • Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.309-315
    • /
    • 2003
  • Extraction of Natural Artemisia by using super critical carbon dioxide is operated under $40-50^{\circ}C$ and 200-250 atm, thus, conversion rate is very low as 7wt% while high energy is being wasted. When Natural Artemisia Extract is applied in the control of microbe, concentration and reaction time greatly affected to the growth of microbe. Especially, when refined oil concentration from Natural Artemisia added more than 1,000ppm, staphylococcus aureus and fungi are terminated completely. Thus, it is proven that Natural Artemisia Extract has antimicrobial effect.

Antimicrobial activity of Mongolian medicinal plants

  • Gonchig, Enkhmaa;Erdenebat, Sarnaizul;Togtoo, Ouyntsetseg;Bataa, Sukhkhuu;Gendaram, Odontuya;Kim, Young-Sup;Ryu, Shi-Yong
    • Natural Product Sciences
    • /
    • v.14 no.1
    • /
    • pp.32-36
    • /
    • 2008
  • The antimicrobial activity of seventy five ethanol extracts obtained from 67 different kinds of plant species of the Mongolian flora were evaluated by means of the disc diffusion method against five species of microorganisms, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Micrococcus luteus and Pseudomonas aeruginosa. Among the plant extracts examined, 34 kinds of extracts demonstrated significant antibacterial activity against one or more species of microorganisms, respectively. Especially, the root extract of Paeonia anomala, the whole herb extract of Myricaria alopecuroides, the whole herb extract of comarum zalesovianum, the whole herb extract of Agrimonia pilosa and some other plant extracts demonstrated a particularly potent antimicrobial activity. The ethylacetate fractions obtained from the whole herb extract of Myricaria alopecuroides and from those of Sedum aizoon, Paeonia anomala, Sedum hybridum and Dasiphora fruticosa exhibited a particularly potent antibacterial activity especially against Staphylococcus aureus and Micrococcus luteus.

Antimicrobial and Antioxidative Effects of Isoflavonoids on Skin Microbial Inflammation Pathogens (Isoflavonoid의 피부염증균에 대한 항균 및 항산화효과)

  • Shin, Jung-Mi;Yu, Hung-Won;Lee, Hyun-Ok;Lee, Mi-Hee;Baek, Seung-Hwa
    • YAKHAK HOEJI
    • /
    • v.50 no.1
    • /
    • pp.15-20
    • /
    • 2006
  • Puerarin and daidzin have been isolated from Puerariae thunbergiana Benth. Structures were determined by spectroscopic methods. Compounds showed weak antimicrobial activity against S. mutans, S. epidermidis, S. aureus, and C. albicans (MIC, $800{\mu}g/ml$). However, these compounds were not antioxidative. Puerariae thunbergiana Benth. extracts against microorganisms were evaluated in terms of the minimum inhibitory concentrations (MIC). In general, C. albicans was stronger antimicrobial activity than the other microorganisms. The antioxidative activity of was observed in the etyl acetate extract ($IC_{50},\;119.87{\pm}0.16\;{\mu}g/ml$). The DPPH radical scavenging effect ($IC_{50},\;1,673.3{\pm}0.54\;{\mu}M$) of the puerarin was comparable with that of synthetic antioxidant, BHA $(IC_{50},\;88.39{\pm}1.1){\times}10^{3}{\mu}M$. These results suggest that puerarin and daidzin have a potential antimicrobial activity.

Antimicrobial Effect of Puerariae thunbergiana Extracts against Oral Microorganism (칡 추출물의 구강미생물에 대한 항균효과)

  • Lee, Hyun-Ok;Kim, Chang-Hee;Lim, Jin-A;Lee, Mi-Hee;Baek, Seung-Hwa
    • Journal of dental hygiene science
    • /
    • v.4 no.1
    • /
    • pp.45-48
    • /
    • 2004
  • In the current research for natural products with antimicrobial effects, various extracts of Puerariae thunbergiana and isoflavones against microorganisms were evaluated in terms of the minimum inhibitory concentrations (MIC). In general, Candida albicans was stronger antimicrobial activity than the other microorganisms such as Streptococcus mutans, Staphylococcus epidermidis, and Staphylococcus aureus. The maximum activity was exhibited by methanol extract of the leaves of Puerariae thunbergiana Beth. against Candida albicans(MIC, $400{\mu}g/mL$). These results suggest that methanol extract of Puerariae thunbergiana has a potential antimicrobial activity.

  • PDF

Antimicrobial Peptides (AMPs) with Dual Mechanisms: Membrane Disruption and Apoptosis

  • Lee, Juneyoung;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.759-764
    • /
    • 2015
  • Antimicrobial peptides (AMPs) are one of the critical components in host innate immune responses to imbalanced and invading microbial pathogens. Although the antimicrobial activity and mechanism of action have been thoroughly investigated for decades, the exact biological properties of AMPs are still elusive. Most AMPs generally exert the antimicrobial effect by targeting the microbial membrane, such as barrel stave, toroidal, and carpet mechanisms. Thus, the mode of action in model membranes and the discrimination of AMPs to discrepant lipid compositions between mammalian cells and microbial pathogens (cell selectivity) have been studied intensively. However, the latest reports suggest that not only AMPs recently isolated but also well-known membrane-disruptive AMPs play a role in intracellular killing, such as apoptosis induction. In this mini-review, we will review some representative AMPs and their antimicrobial mechanisms and provide new insights into the dual mechanism of AMPs.