Browse > Article
http://dx.doi.org/10.4014/jmb.1411.11058

Antimicrobial Peptides (AMPs) with Dual Mechanisms: Membrane Disruption and Apoptosis  

Lee, Juneyoung (School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University)
Lee, Dong Gun (School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.6, 2015 , pp. 759-764 More about this Journal
Abstract
Antimicrobial peptides (AMPs) are one of the critical components in host innate immune responses to imbalanced and invading microbial pathogens. Although the antimicrobial activity and mechanism of action have been thoroughly investigated for decades, the exact biological properties of AMPs are still elusive. Most AMPs generally exert the antimicrobial effect by targeting the microbial membrane, such as barrel stave, toroidal, and carpet mechanisms. Thus, the mode of action in model membranes and the discrimination of AMPs to discrepant lipid compositions between mammalian cells and microbial pathogens (cell selectivity) have been studied intensively. However, the latest reports suggest that not only AMPs recently isolated but also well-known membrane-disruptive AMPs play a role in intracellular killing, such as apoptosis induction. In this mini-review, we will review some representative AMPs and their antimicrobial mechanisms and provide new insights into the dual mechanism of AMPs.
Keywords
Antimicrobial peptide; apoptosis induction; membrane-active action;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zasloff M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 84: 5449-5453.   DOI
2 Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.   DOI   ScienceOn
3 Zhu WL, Song YM, Park Y, Park TH, Yang ST, Kim JI, et al. 2007. Substitution of the leucine zipper sequence in melittin with peptoid residues affects self-association, cell selectivity, and mode of action. Biochim. Biophys. Acta Biomembr. 1768: 1506-1517.   DOI   ScienceOn
4 Schmidt NW, Mishra A, Lai GH, Davis M, Sanders LK, Tran D, et al. 2011. Criterion for amino acid composition of defensins and antimicrobial peptides based on geometry of membrane destabilization. J. Am. Chem. Soc. 133: 6720-6727.   DOI   ScienceOn
5 Park C, Lee DG. 2010. Melittin induces apoptotic features in Candida albicans. Biochem. Biophys. Res. Commun. 394: 170-172.   DOI   ScienceOn
6 Reilly DS, Tomassini N, Bevins CL, Zasloff M. 1994. A Paneth cell analogue in Xenopus small intestine expresses antimicrobial peptide genes: conservation of an intestinal host-defense system. J. Histochem. Cytochem. 42: 697-704.   DOI   ScienceOn
7 Ryu S, Choi SY, Acharya S, Chun YJ, Gurley C, Park Y, et al. 2011. Antimicrobial and anti-inflammatory effects of cecropin A(1-8)-magainin2(1-12) hybrid peptide analog p5 against Malassezia furfur infection in human keratinocytes. J. Invest. Dermatol. 131: 1677-1683.   DOI   ScienceOn
8 Scott MG, Yan H, Hancock RE. 1999. Biological properties of structurally related alpha-helical cationic antimicrobial peptides. Infect. Immun. 67: 2005-2009.
9 Shai Y. 2002. Mode of action of membrane active antimicrobial peptides. Biopolymers 66: 236-249.   DOI   ScienceOn
10 Shin SY, Lee MK, Kim KL, Hahm KS. 1997. Structure-antitumor and hemolytic activity relationships of synthetic peptides derived from cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. J. Pept. Res. 50: 279-285.   DOI
11 Steiner H, Andreu D, Merrifield RB. 1988. Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Biochim. Biophys. Acta 939: 260-266.   DOI   ScienceOn
12 Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81: 1475-1485.   DOI   ScienceOn
13 Merrifield RB, Juvvadi P, Andreu D, Ubach J, Boman A, Boman HG. 1995. Retro and retroenantio analogs of cecropin-melittin hybrids. Proc. Natl. Acad. Sci. USA 92: 3449-3453.   DOI
14 Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW. 1996. Membrane pores induced by magainin. Biochemistry 35: 13723-13728.   DOI   ScienceOn
15 Matsuzaki K, Harada M, Funakoshi S, Fujii N, Miyajima K. 1991. Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim. Biophy. Acta 1063: 162-170.   DOI   ScienceOn
16 Pandey BK, Ahmad A, Asthana N, Azmi S, Srivastava RM, Srivastava S, et al. 2010. Cell-selective lysis by novel analogues of melittin against human red blood cells and Escherichia coli. Biochemistry 49: 7920-7929.   DOI   ScienceOn
17 Nakajima Y, Qu XM, Natori S. 1987. Interaction between liposomes and sarcotoxin IA, a potent antibacterial protein of Sarcophaga peregrina (flesh fly). J. Biol. Chem. 262: 1665-1669.
18 Ogawa H, Fukushima K, Naito H, Funayama Y, Unno M, Takahashi K, et al. 2003. Increased expression of HIP/PAP and regenerating gene III in human inflammatory bowel disease and a murine bacterial reconstitution model. Inflamm. Bowel Dis. 9: 162-170.   DOI   ScienceOn
19 Ouellette AJ. 2011. Paneth cell α-defensins in enteric innate immunity. Cell. Mol. Life Sci. 68: 2215-2219.   DOI
20 Paneth J. 1887. Ueber die secernirenden Zellen des Dünndarm-Epithels. Arch. Mikrosk. Anat. 31: 113-191.   DOI
21 Lee JY, Boman A, Sun CX, Andersson M, Jörnvall H, Mutt V, et al. 1989. Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc. Natl. Acad. Sci. USA 86: 9159-9162.   DOI
22 Lee J, Lee DG. 2014. Melittin triggers in Candida albicans through the reactive oxygen species-mediated mitochondria/caspase-dependent pathway. FEMS Microbiol. Lett. 355: 36-42.   DOI   ScienceOn
23 Lee J, Hwang JS, Hwang B, Kim JK, Kim SR, Kim Y, et al. 2010. Influence of the papiliocin peptide derived from Papilio xuthus on the perturbation of fungal cell membranes. FEMS Microbiol. Lett. 311: 70-75.   DOI   ScienceOn
24 Lee J, Hwang JS, Hwang IS, Cho J, Lee E, Kim Y, et al. 2012. Coprisin-induced antifungal effects in Candida albicans correlate with apoptotic mechanisms. Free Radic. Biol. Med. 52: 2302-2311.   DOI   ScienceOn
25 Lehrer RI. 2004. Primate defensins. Nat. Rev. Microbiol. 2: 727-738.   DOI   ScienceOn
26 Lee MT, Hung WC, Chen FY, Huang HW. 2008. Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides. Proc. Natl. Acad. Sci. USA 105: 5087-5092.   DOI   ScienceOn
27 Lee W, Lee DG. 2014. Magainin 2 induces bacterial cell death showing apoptotic properties. Curr. Microbiol. 69: 794-801.   DOI   ScienceOn
28 Lehotzky RE, Partch CL, Mukherjee S, Cash HL, Goldman WE, Gardner KH, et al. 2010. Molecular basis for peptidoglycan recognition by a bactericidal lectin. Proc. Natl. Acad. Sci. USA 107: 7722-7727.   DOI   ScienceOn
29 Li ZQ, Merrifield RB, Boman IA, Boman HG. 1988. Effects on electrophoretic mobility and antibacterial spectrum of removal of two residues from synthetic sarcotoxin IA and addition of the same residue to cecropin B. FEBS Lett. 231: 299-302.   DOI   ScienceOn
30 Hwang JS, Lee J, Kim YJ, Bang HS, Yun EY, Kim SR, et al. 2009. Isolation and characterization of a defensin-like peptide (coprisin) from the dung beetle, Copris tripartitus. Int. J. Pept. DOI: 10.1155/2009/136284.   DOI
31 Hristova K, Dempsey CE, White SH. 2001. Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys. J. 80: 801-811.   DOI   ScienceOn
32 Hultmark D, Steiner H, Rasmuson T, Boman HG. 1980. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106: 7-16.   DOI   ScienceOn
33 Kim JK, Lee E, Shin S, Jeong KW, Lee JY, Bae SY, et al. 2011. Structure and function of papiliocin with antimicrobial and anti-inflammatory activities isolated from the swallowtail butterfly, Papilio xuthus. J. Biol. Chem. 286: 41296-41311.   DOI
34 Dempsey CE. 1990. The actions of melittin on membranes. Biochim. Biophys. Acta 1031: 143-161.   DOI   ScienceOn
35 Kim SR, Hong MY, Park SW, Choi KH, Yun EY, Goo TW, et al. 2010. Characterization and cDNA cloning of a cecropin-like antimicrobial peptide, papiliocin, from the swallowtail butterfly, Papilio xuthus. Mol. Cells 29: 419-423.   DOI   ScienceOn
36 Lee E, Kim JK, Shin S, Jeong KW, Shin A, Lee J, et al. 2013. Insight into the antimicrobial activities of coprisin isolated from the dung beetle, Copris tripartitus, revealed by structure-activity relationships. Biochim. Biophys. Acta Biomembr. 1828: 271-283.   DOI   ScienceOn
37 Lee J, Choi H, Cho J, Lee DG. 2011. Effects of positively charged arginine residues on membrane pore forming activity of Rev-NIS peptide in bacterial cells. Biochim. Biophys. Acta Biomembr. 1808: 2421-2427.   DOI   ScienceOn
38 Chen HC, Brown JH, Morell JL, Huang CM. 1988. Synthetic magainin analogues with improved antimicrobial activity. FEBS Lett. 236: 462-466.   DOI   ScienceOn
39 Christa L, Carnot F, Simon MT, Levavasseur F, Stinnakre MG, Lasserre C, et al. 1996. HIP/PAP is an adhesive protein expressed in hepatocarcinoma, normal Paneth, and pancreatic cells. Am. J. Physiol. 271: G993-G1002.
40 Christensen B, Fink J, Merrifield RB, Mauzerall D. 1988. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. USA 85: 5072-5076.   DOI   ScienceOn
41 Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ. 2012. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell 46: 561-572.   DOI   ScienceOn
42 Gallo RL, Hooper LV. 2012. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12: 503-516.   DOI   ScienceOn
43 Hider RC, Khader F, Tatham AS. 1983. Lytic activity of monomeric and oligomeric melittin. Biochim. Biophys. Acta 728: 206-214.   DOI   ScienceOn
44 Ganz T. 2003. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3: 710-720.   DOI   ScienceOn
45 Habermann E. 1972. Bee and wasp venoms. Science 177: 314-322.   DOI
46 He K, Ludtke SJ, Heller WT, Huang HW. 1996. Mechanism of alamethicin insertion into lipid bilayers. Biophys. J. 71: 2669-2679.   DOI   ScienceOn
47 Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238-250.   DOI   ScienceOn
48 Adikesavan AK, Katsonis P, Marciano DC, Lua R, Herman C, Lichtarge O. 2011. Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites. PLoS Genet. 7: e1002244.   DOI
49 Bals R, Wilson JM. 2003. Cathelicidins – a family of multifunctional antimicrobial peptides. Cell. Mol. Life Sci. 60: 711-720.   DOI
50 Boman HG, Wade D, Boman IA, Wåhlin B, Merrifield RB. 1989. Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett. 259: 103-106.   DOI   ScienceOn
51 Cash HL, Whitham CV, Behrendt CL, Hooper LV. 2006. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313: 1126-1130.   DOI   ScienceOn
52 Hwang B, Hwang JS, Lee J, Kim JK, Kim SR, Kim Y, et al. 2011. Induction of yeast apoptosis by an antimicrobial peptide, papiliocin. Biochem. Biophys. Res. Commun. 408: 89-93.   DOI
53 Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K. 1997. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of gram-negative bacteria. Biochim. Biophy. Acta 1327: 119-130.   DOI   ScienceOn