• Title/Summary/Keyword: national disaster prevention system

Search Result 383, Processing Time 0.025 seconds

Smart monitoring system with multi-criteria decision using a feature based computer vision technique

  • Lin, Chih-Wei;Hsu, Wen-Ko;Chiou, Dung-Jiang;Chen, Cheng-Wu;Chiang, Wei-Ling
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1583-1600
    • /
    • 2015
  • When natural disasters occur, including earthquakes, tsunamis, and debris flows, they are often accompanied by various types of damages such as the collapse of buildings, broken bridges and roads, and the destruction of natural scenery. Natural disaster detection and warning is an important issue which could help to reduce the incidence of serious damage to life and property as well as provide information for search and rescue afterwards. In this study, we propose a novel computer vision technique for debris flow detection which is feature-based that can be used to construct a debris flow event warning system. The landscape is composed of various elements, including trees, rocks, and buildings which are characterized by their features, shapes, positions, and colors. Unlike the traditional methods, our analysis relies on changes in the natural scenery which influence changes to the features. The "background module" and "monitoring module" procedures are designed and used to detect debris flows and construct an event warning system. The multi-criteria decision-making method used to construct an event warring system includes gradient information and the percentage of variation of the features. To prove the feasibility of the proposed method for detecting debris flows, some real cases of debris flows are analyzed. The natural environment is simulated and an event warning system is constructed to warn of debris flows. Debris flows are successfully detected using these two procedures, by analyzing the variation in the detected features and the matched feature. The feasibility of the event warning system is proven using the simulation method. Therefore, the feature based method is found to be useful for detecting debris flows and the event warning system is triggered when debris flows occur.

Social security aimed disaster response policy based on Big Data application (사회안전을 위한 빅데이터 활용의 재난대응 정책)

  • Choung, Young-chul;Choy, Ik-su;Bae, Yong-guen
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.683-690
    • /
    • 2016
  • In modern society, disasters frequently occur, and the effect is getting more massive. Also, unpredictable future increases anxiety about social security. Accordingly, in order to prevent national-scale emergency from happening, it is highly required governments' role as ICT power nation and transition to disaster management system using big data applied service. Thus, e-gov necessarily acquires disaster response system in order to predict and manage disasters. Disasters are linked with some attributes of modern society in diversity, complexity and unpredictability, so various approach and remedies of them will appease the nation's anxiety upon them. For this reason, this manuscript suggests epidemics preactive warning algorithm model as a mean of reduce national anxiety on disaster using big data for social security. Also, by recognizing the importance of e-gov and analyzing problems in weak disaster management system, it suggests political implication for disaster response.

River Water Environmental Management System by Construction of Early Warning System - A Comparative Study on Korea and Japan.

  • Kang Sang-Hyeok
    • Spatial Information Research
    • /
    • v.12 no.4 s.31
    • /
    • pp.329-337
    • /
    • 2004
  • Typhoons Rusa (2002) and Maemi (2003) struck Kangwon and Gyeongnam provinces of Korea and caused the most extensive flood damages ever blown since the foundation of Meteorological Agency in 1927. Many cities are inundated, crippling the critical facilities and resulting In high irreversible losses of human lives, and damages to infrastructures. These kinds of flood damages were among the worst natural disaster that Korean people experienced. In order to reduce flood damage, it is necessary to investigate how to use the information of water environment during the rainfall disaster. Therefore as per the result of this study, we have suggested few but effective countermeasures for controlling the flooding damages and also the advancements in the areas of disaster information dissemination and early warning system for water environmental management by using optical fiber system in Japan are discussed.

  • PDF

A Study on Preservation of Disaster from Earthquake for Kori Nuclear Power Plant -In terms of Ubiquitous Administrative Spatial Informatization System and Smart Ecological City- (고리원전과 지진재난방재 연구 -스마트 생태도시와 유비쿼터스 행정공간정보화 구축측면에서-)

  • Lee, Sang-Yun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.243-254
    • /
    • 2017
  • Recently, discussions about the guarantee of smart ecological environment have been started in S. Korea. These discussions are becoming more and more popular in the aspect of ubiquitous administrative spatial informatization in utilization using big data as a new paradigm due to the rapid change of information and communication technology, such as the start of smart society and the ubiquitous era. In addition, there is a growing interest in discussing environmental and disaster preservation in terms of ubiquitous smart city construction in smart society. In thisstudy, by applying 'scenario planning' as a foresight method, we have developed a desirable future vision for ubiquitous administrative spatial informatization in terms of preservation of disaster of Kori nuclear power plant like earthquake. In order to establish a high level of city disaster prevention level in S. Korea in 2030 when the big data and big data System will be further intensified in the future, it is necessary to develop advanced ICT city disaster prevention system with big data administrative spatial informatization in terms ofsmart ecological city construction.

Development of Safety Equipment Database for Effective Management in Wooden Cultural Heritage (효율적 목조 문화재 방재관리를 위한 방재설비 데이터베이스구축)

  • Kim, Donghyun;Lee, Ji-hee;Yi, Myungsun
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.46-53
    • /
    • 2016
  • Wooden cultural heritage is vulnerable to fire, flooding and other hazards. Therefore, an effective disaster prevention and mitigation strategy for them should include preventive measures in a full range of management. These were used to construct a disaster safety system for 508 wooden cultural heritage items by the Cultural Heritage Administration. According to the type of ownership and administration, national and public heritage is controlled by personal management or commissional management. Among them, it is arranged with the safety security institute for important cultural properties. In addition, they have problems of field management with no computerization about the management information for a disaster facility system. Therefore, this study aimed to develop a DB platform that can share information with many users who need to manage cultural heritage. Through a field survey, it is feasible to develop a disaster facility system to provide the information, such as the main data, quantity and location.

The Appropriateness of Probabilistic Rainfall of Disaster Impact Assessment System in Jeju Island (재해영향평가 적용 확률강우량의 적정성에 관한 연구 (제주도를 중심으로))

  • Hong-Jun Jo;Seung-Hyun Kim;Kwon-Moon Ko;Dong-Wook Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.2
    • /
    • pp.55-64
    • /
    • 2024
  • The disaster impact assessment system was introduced in 2005 as a disaster prevention procedure for comprehensive and systematic developmental projects. However, according to the 'Practical Guidelines for Disaster Impact Assessment', Jeju Island's unique hydrogeological features necessitate the calculation of isohyetal-based probabilistic rainfall, which can reflect altitude, when estimating probabilistic rainfall for flood volume determination, rather than using conventional methods. Despite Jeju Island being centered around Hallasan, there are three Automatic Weather Stations (AWS) located at the summit of Hallasan, making weather stations denser than in other cities and provinces. Therefore, it is judged that there would be no difficulty in applying conventional methods, such as utilizing the probabilistic rainfall data from the weather stations or employing the Thiessen method, to estimate flood volumes for small-scale project areas. Accordingly, this study conducts a comparative analysis of the impact of applying general probabilistic rainfall from weather stations and isohyetal-based probabilistic rainfall in site in the context of Jeju Island's disaster impact assessment system.

The Efficient ICT Devices Utilization Method using Disaster Security Communication Network (재난안전통신망을 이용한 효율적인 ICT 기기 활용 방안)

  • Hong, Sung-Hwa;Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.474-476
    • /
    • 2018
  • Natural disasters destroy decades of human effort and investments, thereby placing new demands on society for reconstruction and rehabilitation. In most case, the natural phenomena triggering the disasters are beyond human control. In order to solve the problems that the information resources can not be shared among disaster management sectors and their work is hard to be coordinated in city, an idea of application of ubiquitous sense network and ICT technology to model the architecture of the disaster prevention system based on the analysis of characteristics of disasters.

  • PDF

Study on Disaster Prevention in Case of Fire at Subway Platform with Platform Screen Door

  • Rie, Dong-Ho;Yoon, Sung-Wook;Ko, Jae-Woong;Lee, Keun-Oh
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.36-42
    • /
    • 2005
  • A study on fire phenomena in a subway transit mass station has been carried out as a part of disaster prevention plan at the subway station. The ventilation facilities installed in both the platform and the trackway are designed to convert into a smoke exhaust system in emergency situation, creating an environment necessary for evacuation. 3 dimensional Numerical Simulations based on the CFD are carried out using a simulation tool, Fire Dynamic Simulator. Total of six different cases are made and performances are compared each other to find optimal vents operation to ensure safer environment for evacuation at the platform area considering the installation of platform screen door.

A study on the train passage control at railroad bridge under heavy rainfall (철도교량 홍수시 열차운전규제기준에 대한 연구)

  • Park, Young-Kon;Lee, Jin-Wook;Yoon, Hee-Taek;Mok, Jai-Kyun;Kim, Seon-Jong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1001-1006
    • /
    • 2004
  • Railroad disasters are frequently occurred by man-made causes or natural causes. In general, man-made causes are illegal construction practices, deterioration with the lapse of time and railroad crossing accidents, and natural causes are rainfall. snow, wind, earthquake, etc. Of cause, railroad disasters by man-made causes are prevented from keeping the safety principle, constructing multi-level crossing, securing enough men of ability and financial resources and making a thorough check using equipments with high capacity. And railroad disasters by natural causes are also minimized by construction of disaster prevention facilities, introduction and operation of general disaster prevention system and reasonable train passage control. Therefore, to setup the criterion of train passage control for train safety at railroad bridge under heavy rainfall, risky factors, national and oversea criteria under such circumstances are reviewed and a scheme to setup the criterion is suggested.

  • PDF

Flooding Risk under Climate Change of Fast Growing Cities in Vietnam (베트남 급성장 도시지역의 기후변화 홍수재해 위험성 분석)

  • Kim, So Yoon;Lee, Byoung Jae;Lee, Jongso
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Vietnamese cities have a high risk of flooding under climate change due to their geographical characteristics. In this situation, the urban area is expanding with rapid growth of urban population. However, the risk of flooding is increasing due to the increase in impermeable areas and insufficient infrastructure. This study analyzed the urban expansion trend at the national level in Vietnam for the past 10 years (2007-2017) by using the Urban Expansion Intensity Index. Also, this study selected Hue City as a region with a large impact of climate change and a rapid expansion and found the possibility of flooding in the urban expansion area. The result showed that cities have been expanded around major cities in the Red River Delta, Mekong Delta, and coastal areas. In the case of Hue City, the area with fast expansion rate has a higher expected flood area. It implies that the risk of flood disasters may increase if the urabn expansion is carried out without disaster prevention measures. It is expected that Korean urban disaster prevention policies such as urban climate change disaster vulnerability analysis system will be helpful in establishing urban plans considering climate change in the fast growing regions such as Vietnam.