• Title/Summary/Keyword: naphthalene

Search Result 667, Processing Time 0.03 seconds

Experimental Study on Heat Transfer Characteristics of Binary Working Fluid for Clean Large Cauldron Using Liquid-Vapor Phase Change Heat (기-액 상변화 열전달을 이용한 대형 조리용기 개발을 위한 2 성분 작동유체의 열전달 특성실험)

  • Jung, Tae Sung;Kang, Hwan Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.899-905
    • /
    • 2014
  • This paper describes preliminary research conducted for developing a high-efficiency clean large cauldron using the liquid-vapor phase change heat transfer. To improve the isothermal environment of the cauldron, naphthalene and FC-40 were selected as the working fluids to operate well in the temperature range of $100-200^{\circ}C$ and used in experimental investigations of the heat transfer characteristics. A two-phase closed thermosyphon was designed and built to demonstrate the functionality of the working fluids. Startup, boiling, and condensation tests were performed, and the test results were used to examine the possibility of complementary effects of the startup and heat transfer characteristics of the two-phase closed thermosyphon using a mixture of naphthalene and FC-40.

Electrochemical Characteristics of Water-Soluble Phosphate-Functionalized Naphthalene- and Perylene-Bisimides and Their Zirconium Bisphosphate Multilayers on ITO Electrode

  • Cho, Kwang Je;Kim, Yeong Il;Shim, Hyun Kwan
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • N,N'-bis(ethyldihydrogen phosphate)-1,4,5,8-naphthalene bis(dicarboximide) (EPNI) and N,N'-bis(ethyldihydrogen phosphate)-3,4,9,10-perylene bis(dicarboximide) (EPPI) and their zirconium bisphosphate multilayers (Zr-EPNI and Zr-EPPI), that had been briefly reported by us, were further investigated in terms of their electrochemical properties. EPNI in aqueous solution showed typical two reversible reductions at ITO electrode but the reductions were strongly dependent on solution pH while EPPI showed only an irreversible reduction. The single and mixed multilayers of Zr-EPNI and Zr-EPPI were well constructed on ITO electrode by the alternate adsorptions of zirconium ion and the bisimides. While Zr-EPNI multilayer on ITO electrode showed single broad reversible reduction with $E_{1/2}=-0.68V$, Zr-EPPI gave two separated reductions at $E_{1/2}=-0.54$ and -0.81 V vs SCE, quite differently from the solution properties. The average layer densities of the multilayers were estimated as $1.5{\times}10^{-10}$ and $2.3{\times}10^{-10}mol/cm^2$ for Zr-EPNI and Zr-EPPI, respectively. Both the monolayers of Zr-EPNI and Zr-EPPI could not completely block the electron transfer between $Fe(CN){_6}^{3-}$ in solution and ITO electrode but 3-5 layers of Zr-EPNI and Zr-EPPI could block it completely and mediated the one-way electron transfer at the potential shifted to their reduction potentials. When the monolayer of zirconium 1,10-decanediylbisphosphonate (Zr-DBP) was used as a sublayer of Zr-EPNI and Zr-EPPI layers, the mediated electron transfer became prominent without any direct electron transfer.

Study on VOCs Emission Characteristic of Taxidermied Mounting Techniques (박제표본 제작방법에 따른 휘발성유기화합물 방출 특성 연구)

  • OH Jungwoo;CHUNG Yongjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.136-146
    • /
    • 2023
  • Biological materials, such as stuffed specimens, can release various acids or volatiles. There has been no research carried out on the emission characteristics of organic compounds generated from the preservatives used in taxidermy specimens or associated manufacturing materials and methods. Therefore, in order to identify the organic compounds generated from taxidermy specimens, a degradation experiment was conducted on specimens for each material and for storage specimens. To produce Ogye chicken specimens, naphthalene and borax were used as preservatives, and planer sawdust, newspaper, and polystyrene foam were used as the core body materials. The deterioration experiment was conducted for 2 weeks in a high-temperature environment(50℃) and a high-humidity environment (95%), with an Ogye chicken specimen (year 2015) kept in an animal storage facility. Results indicated that the concentration of organic compounds generated by the specimen in the high-temperature environment tended to be greater than that in the high-humidity environment. The preservatives benzene, toluene, xylene, and p-dichlorobenzene were detected in the specimens using naphthalene, confirming that naphthalene is a major organic compound release factor, and the specimens that used sawdust, newspaper, and polystyrene foam also exhibited organic compounds. This appears to have been due to degradation of the material. In addition, ammonia was detected in the specimens for each material due to decay. In particular, the specimens using borax at high temperature were subject to approximately 9 times higher rates of ammonia-related deterioration than the specimens using naphthalene. These results can be considered to result from the prevention of biological damage through insecticidal effects by accelerating the sublimation of naphthalene in a high-temperature environment. Naphthalene is a potentially carcinogenic substance, and when used as a preservative, proper use management is required. Taxidermy specimens can release various organic compounds depending on the manufacturing techniques used, so a systematic preservation management plan is required that depends on conditions such as the applicable manufacturing materials and preservatives.

Application of Adsorption Sampling and Thermal Desorption with GC/MS Analysis for the Measurement of Low-Molecular Weight PAHs in Ambient Air (환경대기 중 저분자 PAHs 측정을 위한 흡착-열탈착-GC/MS 방법의 적용)

  • Seo, Seok-Jun;Seo, Young-Kyo;Hwang, Yoon-Jung;Jung, Dong-Hee;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.362-377
    • /
    • 2014
  • Polycyclic aromatic hydrocarbons (PAHs) have been of particular concern since they are present both in the vapor and particulate phases in ambient air. In this study, a simple method was applied to determine the vapor phase PAHs, and the performance of the new method was evaluated with a conventional method. The simple method was based on adsorption sampling and thermal desorption with GC/MS analysis, which is generally applied to the determination of volatile organic compounds (VOCs) in the air. A combination of Carbotrap (300 mg) and Carbotrap-C (100 mg) sorbents was used as the adsorbent. Target compounds included two rings PAHs such as naphthalene, acenaphthylene, and acenaphthene. Among them, naphthalene was listed as one of the main HAPs together with a number of VOCs in petroleum refining industries in the USA. For comparison purposes, a method based on adsorption sampling and solvent extraction with GC/MS analysis was adopted, which is in principle same as the NIOSH 5515 method. The performance of the adsorption sampling and thermal desorption method was evaluated with respect to repeatabilities, detection limits, linearities, and storage stabilities for target compounds. The analytical repeatabilities of standard samples are all within 20%. Lower detection limits was estimated to be less than 0.1 ppbv. In the results from comparison studies between two methods for real air samples. Although the correlation coefficients were more than 0.9, a systematic difference between the two groups was revealed by the paired t-test (${\alpha}$=0.05). Concentrations of two-rings PAHs determined by adsorption and thermal desorption method consistently higher than those by solvent extraction method. The difference was caused by not only the poor sampling efficiencies of XAD-2 for target PAHs and but also sample losses during the solvent extraction and concentration procedure. This implies that the levels of lower molecular PAHs tend to be underestimated when determined by a conventional PAH method utilizing XAD-2 (and/or PUF) sampling and solvent extraction method. The adsorption sampling and thermal desorption with GC analysis is very simple, rapid, and reliable for lower-molecular weight PAHs. In addition, the method can be used for the measurement of VOCs in the air simultaneously. Therefore, we recommend that the determination of naphthalene, the most volatile PAH, will be better when it is measured by a VOC method instead of a conventional PAH method from a viewpoint of accuracy.

Characterization of PAH-Degrading Bacteria from Soils of Reed Rhizosphere in Sunchon Bay Using PAH Consortia (순천만 갈대근권 토양으로부터 얻은 PAH 분해세균의 특성 분석)

  • Kim Sung-Hyun;Kang Sung-Mi;Oh Kye-Heon;Kim Seung-Il;Yoon Byoung-Jun;Kahng Hyung-Yeel
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.208-215
    • /
    • 2005
  • This study was accomplished in order to collect fundamental data on microbial roles in recycling process of reed rhizosphere. Sunchon bay, which is considered as one of the marsh and mud environments severely affected by human activities such agriculture and fisheries, was selected as a model place. In our initial efforts, two bacterial consortia were obtained by enrichment culture using PAH mixtures containing anthracene, naphthalene, phenanthrene and pyrene as the sources of carbon and energy, and four pure bacteria capable of rapid degradation of PAH were isolated from them. Four strains designated as SCB1, SCB2, SCB6, and SCB7 revealed by morphological, physiological and molecular analyses were identified as Burkholderia anthina, Alcaligenes sp., Achromobacter xylosoxidans., and Pseudomonas putida, respectively with over $99{\%}$ confidence. Notably, Burkholderia anthina SCB1 and Alcaligenes sp. SCB2 were found to utilize anthracene and pyrene more quickly than naphthalene and phenanthrene, whereas Achromobacter xylosoxidans SCB6 and Pseudomonas putida SCB7 exhibited similar growth and degradation patterns except for pyrene. These facts suggest that the rhizosphere microorganisms capable of PAH degradation might be used to clean up the contamination sites with polycyclic aromatic hydrocarbons.

GC-MASS Analysis and Microbial Enumeration for the Identification of Spoiled Red Pepper Powder (GC-MASS 분석과 미생물 균수 차이에 의한 희아리 고춧가루 판별)

  • Jeong, Su-Jin;Han, Sang-Bae;Uhm, Tai-Boong
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.191-197
    • /
    • 2008
  • This work was intended for the identification of markers that are found only in the spoiled red pepper powder. When analyzed by GC/MASS, the spoiled red pepper powder contains characteristic naphthalene derivatives, 1, 2, 3, 5, 6, 7, 8, $8\alpha$-octahydro-1, $8\alpha$-dimethyl-7-(1-methylethenyl)-naphthalene and 2-isopropenyl-$4\alpha$, 8-dimethyl-1, 2, 3, 4, $4\alpha$, 5, 6, $8\alpha$-octahydronaphthalene, which have not found in the normal red pepper powder. In addition, microscopic observation and microbial enumeration of the red pepper powder had been performed. Images by scanning electron microscopy showed that the surfaces of spoiled pepper powder were rough with many kinds of microbes, compared with those of normal red pepper powder. A good correlation between the bacterial and fungal counts in the same sample was observed and could be clearly classified into two groups, the normal and the spoiled group, by difference in the microbial counts. These results suggest that the spoiled red pepper powder can be identified by a combination of GC/MASS, microbial counts, and scanning electron microscopy.

Comparison of the Sonodegradation of Naphthalene and Phenol by the Change of Frequencies and Addition of Oxidants or Catalysts (주파수 변화 및 보조제 첨가에 따른 나프탈렌 및 페놀의 초음파 분해효율 비교)

  • Park, Jong-Sung;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.706-713
    • /
    • 2010
  • The research seeks to find the optimal conditions for sonodegradation of naphthalene and phenol as exemplary organic pollutants to be subjected to ultrasound in varying frequencies (28 kHz, 580 kHz, and 1,000 kHz) and in the presence of different kinds of additive (T$TiO_2$, $H_2O_2$, $FeSO_4$, Zeolite, and Cu). In cases of both naphthalene and phenol, 580 kHz of ultrasound has proven to be the most effective among others at sonodegradation. Based on the observation that OH radicals are also produced in maximum under exposure of 580 kHz of ultrasound, we concluded that this frequency of ultrasound creates hospitable condition for the combined process of degradation by pyrolysis and oxidization. $FeSO_4's$ degradation rate and k1 value have increased by approximately 1.8 times compared with the results of the solutions without any additives. This seems to be the result of ultrasound reaction which, accompanied by Fenton's reaction, increased the oxidative degradation and the production of OH radicals. However, application of ultrasound and Fenton's reaction is limited to the batch type conditions, as its use in continuous system can cause loss of iron or decay of the cistern, thereby creating additional pollutants. When the additive is replaced with $TiO_2$, on the contrary, the rate of sonodegradation has increased up to 20% compared to when there was no additive. We therefore conclude that $TiO_2$ could prove to be an effective additive for ultrasound degradation in continuous treatment system.

Identification and Molecular Characterization of Superoxide Dismutase Genes in Pseudomonas rhodesiae KK1 Capable of Polycyclic Aromatic Hydrocarbon Degradation (PAH를 분해할 수 있는 Pseudomonas rhodesiae KK1의 SOD 유전자의 동정 및 분자학적 특성 분석)

  • Lee, Dong-Heon;Oh, Kye-Heon;Kim, Seung Il;Kahng, Hyung-Yeel
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.75-82
    • /
    • 2016
  • Pseudomonas rhodesiae KK1 has been reported to degrade polycyclic aromatic hydrocarbons (PAHs), such as anthracene, naphthalene, and phenanthrene, which are considered major environmental contaminants. Interestingly, antioxidant genes, including superoxide dismutase, are known to be expressed at different levels in response to environmental contaminants. This study was performed to identify the superoxide dismutase gene in strain KK1, which may be indirectly involved with degradation of PAHs, as well as to investigate the expression pattern of the superoxide dismutase gene in cells grown on different PAHs. Two types of superoxide dismutase genes responsible for the antioxidant defense mechanism, Mn-superoxide dismutase (sodA) and Fe-superoxide dismutase (sodB), were identified in P. rhodesiae KK1. The sodA gene in strain KK1 shared 95% similarity, based on 141 amino acids, with the Mn-sod of P. fluorescens Pf-5. The sodB strain, based on 135 amino acids, shared 99% similarity with the Fe-sod of P. fluorescens Pf-5. Southern hybridization using the sod gene fragment as a probe showed that at least two copies of superoxide dismutase genes exist in strain KK1. RT-PCR analysis revealed that the sodA and sodB genes were more strongly expressed in response to naphthalene and phenanthrene than to anthracene. Interestingly, sodA and sodB activities were revealed to be maintained in cells grown on all of the tested substrates, including glucose.