Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.1.75

Identification and Molecular Characterization of Superoxide Dismutase Genes in Pseudomonas rhodesiae KK1 Capable of Polycyclic Aromatic Hydrocarbon Degradation  

Lee, Dong-Heon (Department of Environmental Education, Sunchon National University)
Oh, Kye-Heon (Department of Life Science, Soonchunhyang University)
Kim, Seung Il (Proteomics Team, Korea Basic Science Institute)
Kahng, Hyung-Yeel (Department of Environmental Education, Sunchon National University)
Publication Information
Journal of Life Science / v.26, no.1, 2016 , pp. 75-82 More about this Journal
Abstract
Pseudomonas rhodesiae KK1 has been reported to degrade polycyclic aromatic hydrocarbons (PAHs), such as anthracene, naphthalene, and phenanthrene, which are considered major environmental contaminants. Interestingly, antioxidant genes, including superoxide dismutase, are known to be expressed at different levels in response to environmental contaminants. This study was performed to identify the superoxide dismutase gene in strain KK1, which may be indirectly involved with degradation of PAHs, as well as to investigate the expression pattern of the superoxide dismutase gene in cells grown on different PAHs. Two types of superoxide dismutase genes responsible for the antioxidant defense mechanism, Mn-superoxide dismutase (sodA) and Fe-superoxide dismutase (sodB), were identified in P. rhodesiae KK1. The sodA gene in strain KK1 shared 95% similarity, based on 141 amino acids, with the Mn-sod of P. fluorescens Pf-5. The sodB strain, based on 135 amino acids, shared 99% similarity with the Fe-sod of P. fluorescens Pf-5. Southern hybridization using the sod gene fragment as a probe showed that at least two copies of superoxide dismutase genes exist in strain KK1. RT-PCR analysis revealed that the sodA and sodB genes were more strongly expressed in response to naphthalene and phenanthrene than to anthracene. Interestingly, sodA and sodB activities were revealed to be maintained in cells grown on all of the tested substrates, including glucose.
Keywords
Antioxidant enzyme; PAHs; Pseudomonas rhodesiae KK1; RT-PCR; SOD;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cerniglia, C. E. 1993. Biodegradation of polycyclic aromatic hydrocarbons. Curr. Opin. Biotechnol. 4, 331-338.   DOI
2 Guo, M., Block, A., Bryan, C. D., Becker, D. F. and Alfano, J. R. 2012. Pseudomonas syringae catalases are collectively required for plant pathogenesis. J. Bacteriol. 194, 5054-5064   DOI
3 Heinaru, E., Vedler, E., Jutkina, J., Aava, M. and Heinaru, A. 2009. Conjugal transfer and mobilization capacity of the completely sequenced naphthalene plasmid pNAH20 from multiplasmid strain Pseudomonas fluorescens PC20. FEMS Microbiol. Ecol. 70, 563-574.   DOI
4 Herrick, J. B., Madsen, E. L., Batt, C. A. and Ghiorse, W. C. 1993. Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl. Environ. Microbiol. 59, 687-694.
5 Kahng H. Y., Nam, K., Kukor, J. J., Yoon, B. J., Lee, D. H., Oh, D. C., Kam, S. K. and Oh, K. H. 2002. PAH utilization by Pseudomonas rhodesiae KK1 isolated from a former manufactured-gas plant site. Appl. Microbiol. Biotechnol. 60, 475-480.   DOI
6 Kang, Y. S., Lee, Y., Jung, H., Jeon, C. O., Madsen, E. L. and Park, W. 2007. Overexpressing antioxidant enzymes enhances naphthalene biodegradation in Pseudomonas sp. strain As1. Microbiology 153, 3246-3254.   DOI
7 Lü, Z., Sang, L., Li, Z. and Min, H. 2009. Catalase and superoxide dismutase activities in a Stenotrophomonas maltophilia WZ2 resistant to herbicide pollution. Ecotoxicol. Environ. Safety 72, 136-143.   DOI
8 Lee, D. H., Oh, K. H. and Kahng, H. Y. 2009. Molecular analysis of antioxidant genes in the extremohalophile marine bacterium Exiguobacterium sp. CNU020. Biotechnol. Lett. 31, 1245-1251.   DOI
9 Lee. Y., Pena-Llopis, S., Kang, Y. S., Shin, H. D., Demple, B., Madsen, E. L., Jeon, C. O. and Park, W. 2006. Expression analysis of the fpr (ferredoxin-NADP+ reductase) gene in Pseudomonas putida KT2440. Biochem. Biophys. Res. Comm. 339, 1246-1254.   DOI
10 Lee, D. H., Oh, D. C., Oh, Y. S., .Malinverni, J. C., Kukor, J. J. and Kahng, H. Y. 2007. Cloning and characterization of monofunctional catalase from photosynthetic bacterium Rhodospirillum rubrum S1. J. Microbiol. Biotechnol. 17, 1460-1468.
11 Chae, H. Z., Robison, K., Poole, L. B., Church, G., Storz, G. and Rhee, S. G. 1994. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 91, 7017-7021.   DOI
12 Ferrero, M., Llobet-Brossa, E., Lalucat, J., Garcia-Valdes, E., Rossello-Mora, R. and Bosch, R. 2002. Coexistence of two distinct copies of naphthalene degradation genes in Pseudomonas strains isolated from the western Mediterranean region. Appl. Environ. Microbiol. 68, 957-962.   DOI
13 Gaupp, R., Ledala, N. and Somerville, G. A. 2012. Staphylococcal response to oxidative stress. Front Cell Infect. Microbiol. 2, 1-19.
14 Krayl, M., Benndorf, D. and Loffhagen, N. 2003. Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl-ter-butyl ether in Pseudomonas putida KT2440. Proteomics 3, 1544-1552.   DOI
15 Roy, S., Genin, S., Sen, C. K. and Hänninen, O. 1996. Monitoring of polycyclic hydrocarbons using ‘moss bags’: bioaccumulation and responses of antioxidant enzymes in Fontinalis antipyretica hedw. Chemosphere 32, 2305-2315.   DOI
16 Kim, H., Lee, J. H., Hah, Y. C. and Roe, J. H. 1994. Characterization of the major catalase from Strepomyces coelicolor ATCC 10146. Microbiology 140, 3391-3397.   DOI
17 Nelson, K., Paulsen, I., Weinel, C., Dodson, R., Hilbert, H., Fouts, D., Gill, S., Pop, M., Martins Dos Santos, V., Holmes, M., Brinkac, L., Beanan, M., DeBoy, R., Daugherty, S., Kolonay, J., Madupu, R., Nelson, W., White, O., Peterson, J., Khouri, H., Hance, I., Lee, P., Holtzapple, E., Scanlan, D., Tran, K., Moazzez, A., Utterback, T., Rizzo, M., Lee, K., Kosack, D., Moestl, D., Wedler, H., Lauber, J., Hoheisel, J., Straetz, M., Heim, S., Kiewitz, C., Eisen, J., Timmis, K., Duesterhoft, A., Tummler, B. and Fraser, C. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4, 799-808.   DOI
18 Paulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S., Mavrodi, D. V., DeBoy, R. T., Seshadri, R., Ren, Q., Madupu, R., Dodson, R. J., Durkin, A. S., Brinkac, L. M., Daugherty, S. C., Sullivan, S. A., Rosovitz, M. J., Gwinn, M. L., Zhou, L., Schneider, D. J., Cartinhour, S. W., Nelson, W. C., Weidman, J., Watkins, K., Tran, K., Khouri, H., Pierson, E. A., Pierson, L. S. 3rd, Thomashow, L. S. and Loper, J. E. 2005. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat. Biotechnol. 23, 873-878.   DOI
19 Poole, L. B. 2005. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch. Biochem. Biophys. 433, 240-254.   DOI
20 Klotz, M. G. and Hutcheson, S. W. 1992. Multiple periplasmic catalase of phytopathogenic strains of Pseudomonas syringae. Appl. Environ. Microbiol. 58, 2468-2473.
21 Tu, W. Y., Pohl, S., Summpunn, P., Hering, S., Kerstan, S. and Harwood, C. R. 2012. Comparative analysis of the responses of related pathogenic and environmental bacteria to oxidative stress. Microbiology 158, 636-647.   DOI
22 Vattanaviboon, P., Panmanee, W. and Mongkolsuk, S. 2003. Induction of peroxide and superoxide protective enzymes and physiological cross-protection against peroxide killing by a superoxide generator in Vibrio harveyi. FEMS Microbiol. Lett. 221, 89-95.   DOI
23 Silby, M. W., Cerdeno-Tarraga, A. M., Vernikos, G. S., Giddens, S. R., Jackson, R. W., Preston, G. M., Zhang, X. X., Moon, C. D., Gehrig, S. M., Godfrey, S. A., Knight, C. G., Malone, J. G., Robinson, Z., Spiers, A. J., Harris, S., Challis, G. L., Yaxley, A. M., Harris, D., Seeger, K., Murphy, L., Rutter, S., Squares, R., Quail, M. A., Saunders, E., Mavromatis, K., Brettin, T. S., Bentley, S. D., Hothersall, J., Stephens, E., Thomas, C. M., Parkhill, J., Levy, S. B., Rainey, P. B. and Thomson, N. R. 2009. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 10, R51.1-16
24 Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S., Hufnagle, W. O., Kowalik, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G. K., Wu, Z., Paulsen, I. T., Reizer, J., Saier, M. H., Hancock, R. E., Lory, S. and Olson, M. V. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959-964.   DOI
25 Takizawa, N., Kaida, N., Torigoe, S., Moritani, T., Sawada, T., Satoh, S. and Kiyohara, H. 1994. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J. Bacteriol. 176, 2444-2449.   DOI
26 Beyer, W. F. and Fridovich, I. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Ann. Biochem. 161, 559-556.   DOI