• 제목/요약/키워드: nanotube array

검색결과 42건 처리시간 0.029초

N-Type Carbon-Nanotube MOSFET Device Profile Optimization for Very Large Scale Integration

  • Sun, Yanan;Kursun, Volkan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권2호
    • /
    • pp.43-50
    • /
    • 2011
  • Carbon-nanotube metal oxide semiconductor field effect transistor (CN-MOSFET) is a promising future device candidate. The electrical characteristics of 16 nm N-type CN-MOSFETs are explored in this paper. The optimum N-type CN-MOSFET device profiles with different number of tubes are identified for achieving the highest on-state to off-state current ratio ($I_{on}/I_{off}$). The influence of substrate voltage on device performance is also investigated in this paper. Tradeoffs between subthreshold leakage current and overall switch quality are evaluated with different substrate bias voltages. Technology development guidelines for achieving high-speed, low-leakage, area efficient, and manufacturable carbon nanotube integrated circuits are provided.

양극산화법에 의한 TiO2 나노튜브 어레이의 제조와 성장거동 (Fabrication and Growth Behavior of TiO2 Nanotube Arrays by Anodic Oxidation Method)

  • 김선민;김기원;류광선;김유영;조권구
    • 한국분말재료학회지
    • /
    • 제18권1호
    • /
    • pp.56-63
    • /
    • 2011
  • Recently, $TiO_2$ nanotubes have considerably researched because of their novel application about photocatalysis, dye-sensitized solar cells (DSSCs), lithium ion battery, etc. In this work, self-standing $TiO_2$ nanotube arrays were fabricated by anodic oxidation method using pure Ti foil as a working electrode in ethylene glycole with 0.3M $NH_4F$ + $2%H_2O$. Growth behavior of $TiO_2$ nanotube arrays was compared according to temperature, voltage and time. The morphology, structure and crystalline of anodized $TiO_2$ nanotube arrays were observed by FE-SEM (field emission scanning electron microscope) and XRD (X-ray diffraction).

아르곤 이온에 의해 표면처리된 CNT 에미터의 전계방출 특성 (Field Emission Characteristics of Surface-treated CNT Emitter by Ar Ion Bombardment)

  • 권상직
    • 전자공학회논문지 IE
    • /
    • 제44권2호
    • /
    • pp.26-31
    • /
    • 2007
  • 카본나노튜브 전계 방출 어레이(carbon nanotube field emission array, CNT FEA)를 유리기판 상에 형성시키기 위하여 CNT 페이스트를 스크린 프린팅 후 표면처리를 수행하였다. 본 실험에서는 효과적인 표면처리 방법으로서 이온 빔을 조사(expose)시키는 방법을 연구하였다. 먼저, 유리 기판상에 감광성 CNT 페이스트를 스크린 프린팅하고 UV 후면노광 및 현상공정에 의해 선택적으로 CNT 페이스트를 남겼다. 다시 고온에서 소성후 CNT들은 바인더 성분들에 의해 문히게 된다. 본 실험에서는 소성된 CNT 페이스트의 표면상에 Ar 이온빔을 가속시켜 페이스트의 바인더(binder)를 선택적으로 제거함으로써 전계방출 특성을 향상시킬 수 있었다. 표면처리를 위한 이온 빔 가속시 이온빔의 가속에너지에 따라 특성이 크게 변화되었는데, 본 연구에서는 100 V의 낮은 가속 전압에서 가장 높은 전계방출 특성을 나타내었으며 가속 전압이 너무 높으면 바인더 성분 외에도 CNT 자체가 제거됨으로써 오히려 특정이 저하됨을 알 수 있었다.

원자간력 현미경 탄소 나노튜브 팁을 이용한 플러렌 나노 구조물 제작에 관한 분자동역학 시뮬레이션 (Molecular Dynamics Simulations of Fullerene Nanostructure Fabrications by Atomic Force Microscope Carbon Nanotube tip)

  • 이준하;이홍주
    • 한국전기전자재료학회논문지
    • /
    • 제17권8호
    • /
    • pp.812-822
    • /
    • 2004
  • This paper shows that carbon nanotubes can be applied to a nanopipette. Nano space in atomic force microscope multi-wall carbon nanotube tips is filled with molecules and atoms with charges and then, the tips can be applied to nanopipette when the encapsulated media flow off under applying electrostatic forces. Since the nano space inside the tips can be refilled, the tips can be permanently used in ideal conditions of no chemical reaction and no mechanical deformation. Molecular dynamics simulations for nanopipette applications demonstrated the possibility of nano-lithography or single-metallofullerene-transistor array fabrication.

Graphene Based Nano-electronic and Nano-electromechanical Devices

  • Lee, Sang-Wook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.13-13
    • /
    • 2011
  • Graphene based nano-electronic and nano-electromechanical devices will be introduced in this presentation. The first part of the presentation will be covered by our recent results on the fabrication and physical properties of artificially twisted bilayer graphene. Thanks to the recently developed contact transfer printing method, a single layer graphene sheet is stacked on various substrates/nano-structures in a controlled manner for fabricating e.g. a suspended graphene device, and single-bilayer hybrid junction. The Raman and electrical transport results of the artificially twisted bilayer indicates the decoupling of the two graphene sheets. The graphene based electromechanical devices will be presented in the second part of the presentation. Carbon nanotube based nanorelay and A new concept of non-volatile memory based on the carbon nanotube field effect transistor together with microelectromechanical switch will be briefly introduced at first. Recent progress on the graphene based nano structures of our group will be presented. The array of graphene resonators was fabricated and their mechanical resonance properties are discussed. A novel device structures using carbon nanotube field effect transistor combined with suspended graphene gate will be introduced in the end of this presentation.

  • PDF

마이크로 구동기를 이용한 탄소나노튜브 어레이의 접촉 면적에 따른 점착력 측정 (Adhesion between Carbon Nanotube Arrays with Different Contact Area Measured Using Microactuator)

  • 최정욱;김종백
    • 정보저장시스템학회논문집
    • /
    • 제10권1호
    • /
    • pp.14-18
    • /
    • 2014
  • Adhesion between carbon nanotube (CNT) arrays is measured and characterized for number of different contact areas. The CNT arrays are directly grown on an electrostatic microactuator, and they make contact with each other during the growth process. The pull-out force is precisely applied by the microactuator while the contact status is identified by measuring electrical resistance between the CNT arrays. We have designed different contact areas of 1000, 6000, and 8500 ${\mu}m^2$ between the CNT arrays, and the corresponding adhesion increases from 0.9 to 3.7 ${\mu}N$ as the contact area increases.

탄소 나노튜브를 활용한 나노 구조물에 대한 시뮬레이션 연구 (A Study of Nanostructure by Carbon Nanotube Simulation)

  • 이준하;이흥주;송영진;윤영식
    • 반도체디스플레이기술학회지
    • /
    • 제4권3호
    • /
    • pp.11-15
    • /
    • 2005
  • This paper shows that carbon nanotubes can be applied to a nanopipette. Nano space in atomic force microscope multi wall carbon nanotube tips is filled with molecules and atoms with charges and then, the tips can be applied to nanopipette when the encapsulated media flow off under applying electrostatic farces. Since the nano space inside the tips can be refilled, the tips can be permanently used in ideal conditions of no chemical reaction and no mechanical deformation. Molecular dynamics simulations for nanopipette applications demonstrated the possibility of nano-lithography or single-metallofullerene-transistor array fabrication.

  • PDF

Preliminary Study on Field Emitter Array Cathodes for Electrodymanic Tether Propulsion

  • Kitamura, Shoji;Nishida, Shin'ichiro;Iseki, Yasushi;Okawa, Yasushi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.300-305
    • /
    • 2004
  • A preliminary study on. field emitter array cathodes was conducted aiming at applying for electrodymanic tether (EDT) propulsion systems. The EDT propulsion systems are assumed to use for active removal systems of post-mission spacecraft, which would otherwise become space debris. A survey on field emit-ter array cathode technology was conducted, and it showed that carbon nanotube (CNT) emitters are suit-able to EDT application. Trial fabrications and evaluation tests of CNT emitters were conducted, which demonstrated a target emission current density of 10 ㎃/$\textrm{cm}^2$. It was found out that the most important technical issue for developing CNT emitters is to improve the performance against voltage breakdown between the emitter and the opposite electrode.

  • PDF

Enhanced Efficiency of Nanoporous-layer-covered TiO2 NanotubeArrays for Front Illuminated Dye-sensitized Solar Cells

  • Kang, Soon-Hyung;Lee, Soo-Yong;Kim, Jae-Hong;Choi, Chel-Jong;Kim, Hyunsoo;Ahn, Kwang-Soon
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.52-57
    • /
    • 2016
  • Nanoporous-layer-covered TiO2 nanotube arrays (Type II TNTs) were fabricated by two-step electrochemical anodization. For comparison, conventional TiO2 nanotube arrays (Type I TNTs) were also prepared by one-step electrochemical anodization. Types I and II TNTs were detached by selective etching and then transferred successfully to a transparent F-doped SnO2 (FTO) substrate by a sol-gel process. Both FTO/Types I and II TNTs allowed front side illumination to exhibit incident photon-to-current efficiencies (IPCEs) in the long wavelength region of 300 to 750 nm without the absorption of light by the iodine-containing electrolyte. The Type II TNT exhibited longer electron lifetime and faster charge transfer than the Type I TNT because of its relatively fewer defect states. These beneficial effects lead to a high overall energy conversion efficiency (5.32 %) of the resulting dye-sensitized solar cell.