• Title/Summary/Keyword: nanoparticles toxicity

Search Result 130, Processing Time 0.022 seconds

Doxorubicin-loaded PEI-silica Nanoparticles for Cancer Therapy

  • Heekyung Park;Seungho Baek;Donghyun Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.570-575
    • /
    • 2023
  • Targeted anticancer drug delivery systems are needed to enhance therapeutic efficacy by selectively delivering drugs to tumor cells while minimizing off-target effects, improving treatment outcomes and reducing toxicity. In this study, a silica-based nanocarrier capable of targeting drug delivery to cancer cells was developed. First, silica nanoparticles were synthesized by the Stöber method using the surfactant cetyltrimethylammonium bromide (CTAB). Increasing the ratio of EtOH in the solvent produced uniformly spherical silica nanoparticles. Washing the nanoparticles removed unreacted residues, resulting in a non-toxic carrier for drug delivery in cells. Upon surface modification, the pH-responsive polymer, polyethyleneimine (PEI) exhibited slow doxorubicin release at pH 7.4 and accelerated release at pH 5.5. By exploiting this feature, we developed a system capable of targeted drug release in the acidic tumor microenvironment.

Characterization of the Effects of Silver Nanoparticles on Liver Cell Using HR-MAS NMR Spectroscopy

  • Kim, Si-Won;Kim, So-Sun;Lee, Sang-Mi;Kwon, Bo-Bae;Choi, Jin-Hee;Hyun, Jin-Won;Kim, Suhk-Mann
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2021-2026
    • /
    • 2011
  • AgNPs (silver nanoparticles) has been widely used for the commercial products, which have antimicrobial agent, medical devices, food industry and cosmetics. Despite, AgNPs have been reported as toxic to the mammalian cell, lung, liver, brain and other organs and many researchers have investigated the toxicity of AgNPs. In this study, we investigated toxicity of the AgNPs to the liver cell using metabolomics based on HRMAS NMR (High Resolution Magic Angle Spinning Nuclear Magnetic Resonance) technics, which could apply to the intact tissues or cells, to avoid the sample destruction. Target profiling and multivariative statistical analysis were performed to analyze the 1D $^1H$ spectrum. The results show that the concentrations of many metabolites were affected by the AgNPs in the liver cell. The concentrations of glutathione (GSH), lactate, taurine, and glycine were decreased and most of amino acids, choline analogues, and pyruvate were increased by the AgNPs. Moreover, the levels of the metabolites were recovered upto similar level of metabolites in the normal cell by the pre-treatment of NAC, external antioxidant. The results suggest that the depletion of the GSH by the AgNPs might induce the conversion of lactate and taurine to the pyruvate.

Size-dependent Toxicity of Metal Oxide Particles on the Soil Microbial Community and Growth of Zea Mays (산화 금속 입자 크기가 옥수수의 성장과 토양 미생물 군집에 미치는 독성)

  • Kim, Sung-Hyun;Jung, Mi-Ae;Lee, In-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1069-1074
    • /
    • 2009
  • This study investigated soil microbial community and growth of Zea mays to compare the toxicity of nano and micro-sized Cu and Zn oxide particles in microcosm system. In the presence of nanoparticles, biomass of Zea mays reduced by 30% compared with micro-sized particles and inhibited growth. Dehydrogenase activity was inhibited by CuO nano although it was increased by ZnO nano particles. According to the Biolog test, the microbial diversity was decreased after exposed to CuO nanoparticles and ZnO microparticles. Therefore, though it is widely recognized that nanoparticles are more harmful than microparticles, we can conclude that the diversity of microbial community does not always influenced by the size of particles of nano and micro.

Green Synthesis to Develop Iron-Nano Formulations and Its Toxicity Assays

  • Kulkarni, Smital;Mohanty, Nimain;Kadam, Nitin N.;Swain, Niharika;Thakur, Mansee
    • Journal of Pharmacopuncture
    • /
    • v.23 no.3
    • /
    • pp.165-172
    • /
    • 2020
  • Objectives: In the past few years, herbal medicines have gained popularity over synthetic drugs because of their natural source and minimal side effects which has led to a tremendous growth of phytopharmaceuticals usage. With the development of nanotechnology, it provides alternative approaches to overcome several limitations using nano-formulations. In spite of considerable quantity of antianemic preparations with different iron forms available, currently additives are used and represented in modern pharmaceutical market. Iron deficiency anemia is a major global public health problem which particularly affects pregnant women, children and elderly persons. The situation is complicated because of disadvantages and drug side effects from existing antianemic medicines. There is a great demand for the development of new antianemic preparations. Green synthesis of iron oxide nanoparticles, possess high potential in this field. Methods: Our study focuses on developing green synthesis of iron oxide nanoparticles (IONPs) of 10-50 nm with spherical shape where different dosages were used -1 mg/kg, 10 mg/kg and 100 mg/kg for exposure in Wistar albino female rats for 28 days. The toxicity was assessed using various parameters such as measurements of the rat body and organ mass, hematology, biochemical evaluation and histopathological examinations. Results: No significant differences were observed in body and organ weights. Hematological indices also indicated no significant differences whereas biochemical factors showed increase in levels of direct bilirubin and globulin of medium as well as high dose and SGPT levels were increased only in high dose. The major organs (heart, kidney and liver) showed histopathological alterations in 10 and 100 mg/kg whereas brain showed only in 100 mg/kg. Conclusion: The toxicity of IONPs was found to be more significant when the concentration was increased; however, low doses can be used for further investigation as an antianemic preparation.

Cytotoxicity of Ultra-pure TiO2 and ZnO Nanoparticles Generated by Laser Ablation

  • Jeong, Minju;Park, Jeong Min;Lee, Eun Jeong;Cho, Yea Seul;Lee, Chunghyun;Kim, Jeong Moo;Hah, Sang Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3301-3306
    • /
    • 2013
  • This paper aims to address the cellular toxicity of ultra-pure titanium dioxide ($TiO_2$) and zinc oxide (ZnO) nanoparticles (NPs) frequently employed in sunscreens as inorganic physical sun blockers to provide protection against adverse effects of ultraviolet (UV) radiation including UVB (290-320 nm) and UVA (320-400 nm). In consideration that the production and the use of inorganic NPs have aroused many concerns and controversies regarding their safety and toxicity and that microsized $TiO_2$ and ZnO have been increasingly replaced by $TiO_2$ and ZnO NPs (< 100 nm), it is very important to directly investigate a main problem related to the intrinsic/inherent toxicity of these NPs and/or their incompatibility with biological objects. In the present study, we took advantage of the laser-assisted method called laser ablation for generation of $TiO_2$ and ZnO NPs. NPs were prepared through a physical process of irradiating solid targets in liquid phase, enabling verification of the toxicity of ultra-pure NPs with nascent surfaces free from any contamination. Our results show that $TiO_2$ NPs are essentially non-poisonous and ZnO NPs are more toxic than $TiO_2$ NPs based on the cell viability assays.

In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles

  • Nam, Ki-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.1
    • /
    • pp.20-24
    • /
    • 2011
  • PURPOSE. The aim of this study was to identify in vitro antimicrobial activity of the tissue conditioner containing silver nanoparticles on microbial strains, Staphylococcus aureus, Streptococcus mutans and Candida albicans. MATERIALS AND METHODS. Experimental disc samples ($20.0{\times}3.0$ mm) of tissue conditioner (GC Soft-Liner, GC cooperation, Tokyo, Japan) containing 0.1 - 3.0% silver nanoparticles (0%: control) were fabricated. Samples were placed on separate culture plate dish and microbial suspensions (100 ${\mu}L$) of tested strains were inoculated then incubated at $37^{\circ}C$. Microbial growth was verified at 24 hrs and 72 hrs and the antimicrobial effects of samples were evaluated as a percentage of viable cells in withdrawn suspension (100 ${\mu}L$). Data were recorded as the mean of three colony forming unit (CFU) numerations and the borderline of the antimicrobial effect was determined at 0.1% viable cells. RESULTS. A 0.1% silver nanoparticles combined to tissue conditioner displayed minimal bactericidal effect against Staphylococcus aureus and Streptococcus mutans strains, a 0.5% for fungal strain. Control group did not show any microbial inhibitory effect and there were no statistical difference between 24 hrs and extended 72 hrs incubation time (P > .05). CONCLUSION. Within the limitation of this in vitro study, the results suggest that the tissue conditioner containing silver nanoparticles could be an antimicrobial dental material in denture plaque control. Further mechanical stability and toxicity studies are still required.

Toxicoproteomic identification of $TiO_2$ nanoparticle-induced protein expression changes in mouse brain

  • Jeon, Yu-Mi;Park, Seul-Ki;Lee, Mi-Young
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.107-114
    • /
    • 2011
  • A proteomic analysis of the proteins in mouse brain that were differentially expressed in response to $TiO_2$ nanoparticles was conducted to better understand the molecular mechanism of $TiO_2$ nanoparticle-induced brain toxicity at the protein level. A total of 990 proteins from mouse brain were resolved by two-dimensional gel electrophoresis. A comparative proteomic analysis revealed that the expression levels of 11 proteins were changed by more than 2-fold in response to $TiO_2$ nanoparticles: eight proteins were upregulated and three were downregulated by $TiO_2$ nanoparticles. In addition, the activities of several antioxidative enzymes and acetylcholine esterase were reduced in $TiO_2$ nanoparticle-exposed mouse brain. The protein profile alterations seem to be due to an indirect effect of $TiO_2$ nanoparticles, because $TiO_2$ nanoparticles were not detected in the brain in this investigation.

Application of nanoparticles in extending the life of oil and gas transmission pipeline

  • Yunye, Liu;Hai, Zhu;Jianfeng, Niu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.733-741
    • /
    • 2022
  • The amount of natural gas that is used on a worldwide scale is continuously going up. Natural gas and acidic components, such as hydrogen sulfide and carbon dioxide, cause significant corrosion damage to transmission lines and equipment in various quantities. One of the fundamental processes in natural gas processing is the separation of acid gases, among which the safety and environmental needs due to the high toxicity of hydrogen sulfide and also to prevent wear and corrosion of pipelines and gas transmission and distribution equipment, the necessity of sulfide separation Hydrogen is more essential than carbon dioxide and other compounds. Given this problem's significance, this endeavor aims to extend the lifespan of the transmission lines' pipes for gas and oil. Zinc oxide nanoparticles made from the environmentally friendly source of Allium scabriscapum have been employed to accomplish this crucial purpose. This is a simple, safe and cheap synthesis method compared to other methods, especially chemical methods. The formation of zinc oxide nanoparticles was shown by forming an absorption peak at a wavelength of about 355 nm using a spectrophotometric device and an X-ray diffraction pattern. The size and morphology of synthesized nanoparticles were determined by scanning and transmission electron microscope, and the range of size changes of nanoparticles was determined by dynamic light scattering device.

Synthesis of Biosurfactant-Based Silver Nanoparticles with Purified Rhamnolipids Isolated from Pseudomonas aeruginosa BS-161R

  • Kumar, C. Ganesh;Mamidyala, Suman Kumar;Das, Biswanath;Sridhar, B.;Devi, G. Sarala;Karuna, Mallampalli SriLakshmi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1061-1068
    • /
    • 2010
  • The biological synthesis of nanoparticles has gained considerable attention in view of their excellent biocompatibility and low toxicity. We isolated and purified rhamnolipids from Pseudomonas aeruginosa strain BS-161R, and these purified rhamnolipids were used to synthesize silver nanoparticles. The purified rhamnolipids were further characterized and the structure was elucidated based on one- and two-dimensional $^1H$ and $^{13}C$ NMR, FT-IR, and HR-MS spectral data. Purified rhamnolipids in a pseudoternary system of n-heptane and water system along with n-butanol as a cosurfactant were added to the aqueous solutions of silver nitrate and sodium borohydride to form reverse micelles. When these micelles were mixed, they resulted in the rapid formation of silver nanoparticles. The synthesized nanoparticles were characterized by UV-Visible spectroscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). The nanoparticles formed had a sharp adsorption peak at 410 nm, which is characteristic of surface plasmon resonance of the silver nanoparticles. The nanoparticles were monodispersed, with an average particle size of 15.1 nm (${\sigma}={\pm}5.82$ nm), and spherical in shape. The EDS analysis revealed the presence of elemental silver signal in the synthesized nanoparticles. The formed silver nanoparticles exhibited good antibiotic activity against both Grampositive and Gram-negative pathogens and Candida albicans, suggesting their broad-spectrum antimicrobial activity.

Research Trends for Nanotoxicity Using Soil Nematode Caenorhabditis elegans (토양선충 Caenorhabditis elegans를 이용한 나노독성 연구동향)

  • Kim, Shin Woong;Lee, Woo-Mi;An, Youn-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.855-862
    • /
    • 2012
  • Caenorhabditis elegans, a free-living nematode mainly found in the soil pore water, roles the critical function in trophic levels, energy flow, and decomposition in soil ecosystem. C. elegans is commonly used species to test soil toxicity. Recently, they are employed broadly as a test organism in nanotoxicology. In this study, a review of the toxicity of nanomaterials for C. elegans was presented based on SCI (E) papers. The nanotoxicity studies using C. elegans have been reported in 20 instances including the mechanism of toxicity. Most studies used K-medium, S-medium, and NGM (Nematode Growth Medium) plate as an exposure medium to test toxicity of nanoparticles. The effects observed include anti aging, phototoxicity, genotoxicity, and dermal effects on C. elegans exposed to nanoparticles. We found that the toxic mechanisms were related with various aspects such as lifespan abnormality, oxidative stress, distribution of particles on inter-organisms, and stress-related gene analysis. C. elegans has advantage to test toxicity of nanoparticles due to various cellular activities, full genome information, and easy observation of transparent body. C. elegans was considered to be a good test species to evaluate the nanotoxicity.