DOI QR코드

DOI QR Code

In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles

  • Nam, Ki-Young (Department of Dentistry, School of Medicine, Keimyung University)
  • Received : 2011.01.27
  • Accepted : 2011.03.11
  • Published : 2011.03.31

Abstract

PURPOSE. The aim of this study was to identify in vitro antimicrobial activity of the tissue conditioner containing silver nanoparticles on microbial strains, Staphylococcus aureus, Streptococcus mutans and Candida albicans. MATERIALS AND METHODS. Experimental disc samples ($20.0{\times}3.0$ mm) of tissue conditioner (GC Soft-Liner, GC cooperation, Tokyo, Japan) containing 0.1 - 3.0% silver nanoparticles (0%: control) were fabricated. Samples were placed on separate culture plate dish and microbial suspensions (100 ${\mu}L$) of tested strains were inoculated then incubated at $37^{\circ}C$. Microbial growth was verified at 24 hrs and 72 hrs and the antimicrobial effects of samples were evaluated as a percentage of viable cells in withdrawn suspension (100 ${\mu}L$). Data were recorded as the mean of three colony forming unit (CFU) numerations and the borderline of the antimicrobial effect was determined at 0.1% viable cells. RESULTS. A 0.1% silver nanoparticles combined to tissue conditioner displayed minimal bactericidal effect against Staphylococcus aureus and Streptococcus mutans strains, a 0.5% for fungal strain. Control group did not show any microbial inhibitory effect and there were no statistical difference between 24 hrs and extended 72 hrs incubation time (P > .05). CONCLUSION. Within the limitation of this in vitro study, the results suggest that the tissue conditioner containing silver nanoparticles could be an antimicrobial dental material in denture plaque control. Further mechanical stability and toxicity studies are still required.

Keywords

References

  1. Okita N, Orstavik D, Orstavik J, Ostby K. In vivo and in vitro studies on soft denture materials: microbial adhesion and tests for antibacterial activity. Dent Mater 1991;7:155-60. https://doi.org/10.1016/0109-5641(91)90035-W
  2. Radford DR, Challacombe SJ, Walter JD. Denture plaque and adherence of Candida albicans to denture-base materials in vivo and in vitro. Crit Rev Oral Biol Med 1999;10:99-116. https://doi.org/10.1177/10454411990100010501
  3. Nair RG, Samaranayake LP. The effect of oral commensal bacteria on candidal adhesion to denture acrylic surfaces. An in vitro study. APMIS 1996;104:339-49. https://doi.org/10.1111/j.1699-0463.1996.tb00725.x
  4. Wilkieson C, Samaranayake LP, MacFarlane TW, Lamey PJ, MacKenzie D. Oral candidosis in the elderly in long term hospital care. J Oral Pathol Med 1991;20:13-6. https://doi.org/10.1111/j.1600-0714.1991.tb00880.x
  5. Rossi T, Laine J, Eerola E, Kotilainen P, Peltonen R. Denture carriage of methicillin-resistant Staphylococcus aureus. Lancet 1995;345:1577.
  6. Harrison A, Basker RM, Smith IS. The compatibility of temporary soft materials with immersion denture cleansers. Int J Prosthodont 1989;2:254-8.
  7. Nikawa H, Iwanaga H, Hamada T, Yuhta S. Effects of denture cleansers on direct soft denture lining materials. J Prosthet Dent 1994;72:657-62. https://doi.org/10.1016/0022-3913(94)90300-X
  8. De Visschere LM, Grooten L, Theuniers G, Vanobbergen JN. Oral hygiene of elderly people in long-term care institutions-a cross-sectional study. Gerodontology 2006;23:195-204. https://doi.org/10.1111/j.1741-2358.2006.00139.x
  9. Casemiro LA, Gomes Martins CH, Pires-de-Souza Fde C, Panzeri H. Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite - part I. Gerodontology 2008;25:187-94. https://doi.org/10.1111/j.1741-2358.2007.00198.x
  10. Quinn DM. The effectiveness, in vitro, of miconazole and ketoconazole combined with tissue conditioners in inhibiting the growth of Candida albicans. J Oral Rehabil 1985;12:177-82. https://doi.org/10.1111/j.1365-2842.1985.tb00633.x
  11. Truhlar MR, Shay K, Sohnle P. Use of a new assay technique for quantification of antifungal activity of nystatin incorporated in denture liners. J Prosthet Dent 1994;71:517-24. https://doi.org/10.1016/0022-3913(94)90193-7
  12. Chow CK, Matear DW, Lawrence HP. Efficacy of antifungal agents in tissue conditioners in treating candidiasis. Gerodontology 1999;16:110-8. https://doi.org/10.1111/j.1741-2358.1999.00110.x
  13. Koopmans AS, Kippuw N, de Graaff J. Bacterial involvement in denture-induced stomatitis. J Dent Res 1988;67:1246-50. https://doi.org/10.1177/00220345880670091901
  14. Budtz-Jorgensen E, Theilade E, Theilade J, Zander HA. Method for studying the development, structure and microflora of denture plaque. Scand J Dent Res 1981;89:149-56.
  15. Fu J, Ji J, Fan D, Shen J. Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. J Biomed Mater Res A 2006;79:665-74.
  16. Slawson RM, Lee H, Trevors JT. Bacterial interactions with silver. Biol Met 1990;3:151-4. https://doi.org/10.1007/BF01140573
  17. Zhao G, Stevens SE Jr. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 1998;11:27-32. https://doi.org/10.1023/A:1009253223055
  18. Alt V, Bechert T, Steinru¨cke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004;25:4383-91. https://doi.org/10.1016/j.biomaterials.2003.10.078
  19. Samuel U, Guggenbichler JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 2004;23:S75-8. https://doi.org/10.1016/j.ijantimicag.2003.12.004
  20. Wright JB, Lam K, Hansen D, Burrell RE. Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 1999;27:344-50. https://doi.org/10.1016/S0196-6553(99)70055-6
  21. Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, Ghannoum MA. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res 2001;80:903-8. https://doi.org/10.1177/00220345010800031101
  22. Bruns W, Keppeler H, Baucks R. Suppression of intrinsic resistance to penicillins in Staphylococcus aureus by polidocanol, a dodecyl polyethyleneoxid ether. Antimicrob Agents Chemother 1985; 27:632-9. https://doi.org/10.1128/AAC.27.4.632
  23. Gristina AG, Jennings RA, Naylor PT, Myrvik QN, Webb LX. Comparative in vitro antibiotic resistance of surface-colonizing coagulase-negative staphylococci. Antimicrob Agents Chemother 1989;33:813-6. https://doi.org/10.1128/AAC.33.6.813
  24. Reverdy ME, Martra A, Fleurette J. Application of a micromethod to the study of the bactericidal activity of 2 antiseptics based on chlorhexidine gluconate. Pathol Biol (Paris) 1986;34:688-93.
  25. Steinberg D, Eyal S. Early formation of Streptococcus sobrinus biofilm on various dental restorative materials. J Dent 2002;30:47-51. https://doi.org/10.1016/S0300-5712(01)00058-6
  26. Satou J, Fukunaga A, Morikawa A, Matsumae I, Satou N, Shintani H. Streptococcal adherence to uncoated and saliva-coated restoratives. J Oral Rehabil 1991;18:421-9.
  27. Hahnel S, Rosentritt M, Burgers R, Handel G. Adhesion of Streptococcus mutans NCTC 10449 to artificial teeth: an in vitro study. J Prosthet Dent 2008;100:309-15. https://doi.org/10.1016/S0022-3913(08)60212-7
  28. Abe Y, Ishii M, Takeuchi M, Ueshige M, Tanaka S, Akagawa Y. Effect of saliva on an antimicrobial tissue conditioner containing silver-zeolite. J Oral Rehabil 2004;31:568-73. https://doi.org/10.1111/j.1365-2842.2004.01267.x
  29. Baehni PC, Takeuchi Y. Anti-plaque agents in the prevention of biofilm-associated oral diseases. Oral Dis 2003;9:23-9. https://doi.org/10.1034/j.1601-0825.9.s1.5.x
  30. Christensen M, Rungby J, Mogensen SC. Effects of selenium on toxicity and ultrastructural localization of mercury in cultured murine macrophages. Toxicol Lett 1989;47:259-70. https://doi.org/10.1016/0378-4274(89)90144-6
  31. Matsuura T, Abe Y, Sato Y, Okamoto K, Ueshige M, Akagawa Y. Prolonged antimicrobial effect of tissue conditioners containing silver-zeolite. J Dent 1997;25:373-7. https://doi.org/10.1016/S0300-5712(96)00050-4
  32. Makila E, Hopsu-Havu VK. Mycotic growth and soft denture lining materials. Acta Odontol Scand 1977;35:197-205. https://doi.org/10.3109/00016357709004655
  33. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 2000;52:662-8. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  34. Geerts GA, Stuhlinger ME, Basson NJ. Effect of an antifungal denture liner on the saliva yeast count in patients with denture stomatitis: a pilot study. J Oral Rehabil 2008;35:664-9. https://doi.org/10.1111/j.1365-2842.2007.01805.x
  35. Petering HG. Pharmacology and toxicology of heavy metals: Silver. Pharmacol Ther 1976;1:127-30.

Cited by

  1. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria vol.112, pp.5, 2012, https://doi.org/10.1111/j.1365-2672.2012.05253.x
  2. Sorption, Solubility, Bond Strength and Hardness of Denture Soft Lining Incorporated with Silver Nanoparticles vol.14, pp.1, 2013, https://doi.org/10.3390/ijms14010563
  3. Nanosilver Application in Dental Cements vol.2012, pp.2090-6072, 2012, https://doi.org/10.5402/2012/365438
  4. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options vol.62, pp.1, 2013, https://doi.org/10.1099/jmm.0.045054-0
  5. Development of Intracanal Formulation Containing Silver Nanoparticles vol.25, pp.4, 2014, https://doi.org/10.1590/0103-6440201302431
  6. Silver Nanoparticles in Dental Biomaterials vol.2015, pp.1687-8795, 2015, https://doi.org/10.1155/2015/485275
  7. A novel antimicrobial orthodontic band cement with in situ–generated silver nanoparticles vol.85, pp.2, 2015, https://doi.org/10.2319/022314-127.1
  8. Review of Nanomaterials in Dentistry: Interactions with the Oral Microenvironment, Clinical Applications, Hazards, and Benefits vol.9, pp.3, 2015, https://doi.org/10.1021/nn505015e
  9. Physical and Mechanical Properties of Antifungal Ionic Liquid-Incorporated Dental Tissue Conditioner vol.08, pp.05, 2017, https://doi.org/10.4236/msa.2017.85026
  10. Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles vol.9, pp.3, 2017, https://doi.org/10.4047/jap.2017.9.3.217
  11. Antifungal and Mechanical Properties of Tissue Conditioner Containing Plant-Derived Component: An In Vitro Study pp.1059941X, 2018, https://doi.org/10.1111/jopr.12546
  12. Broad-spectrum inhibitory effect of green synthesised silver nanoparticles from Withania somnifera (L.) on microbial growth, biofilm and respiration: a putative mechanistic approach vol.12, pp.3, 2018, https://doi.org/10.1049/iet-nbt.2017.0193
  13. Fabrication of a silver nanoparticle-coated collagen membrane with anti-bacterial and anti-inflammatory activities for guided bone regeneration vol.13, pp.6, 2018, https://doi.org/10.1088/1748-605X/aae15b
  14. Antibiofilm activity of synthesized electrospun core-shell nanofiber composites of PLA and PVA with silver nanoparticles vol.5, pp.9, 2018, https://doi.org/10.1088/2053-1591/aad4df
  15. Advances in Soft Denture Liners: An Update vol.16, pp.4, 2011, https://doi.org/10.5005/jp-journals-10024-1682
  16. Effect of Addition of Antifungal Agents on Physical and Biological Properties of a Tissue Conditioner: An In-Vitro Study vol.7, pp.3, 2011, https://doi.org/10.15171/apb.2017.059
  17. Comparison of flexural strength and hardness on denture base resin with silver-fiber filler vol.44, pp.4, 2011, https://doi.org/10.14815/kjdm.2017.44.4.405
  18. Studies on the Curing Efficiency and Mechanical Properties of Bis-GMA and TEGDMA Nanocomposites Containing Silver Nanoparticles vol.19, pp.12, 2011, https://doi.org/10.3390/ijms19123937
  19. Evaluation of antibacterial and antifungal properties of a tissue conditioner used in complete dentures after incorporation of ZnO‒Ag nanoparticles vol.13, pp.1, 2011, https://doi.org/10.15171/joddd.2019.002
  20. Influence of AgVO3 incorporation on antimicrobial properties, hardness, roughness and adhesion of a soft denture liner vol.9, pp.1, 2011, https://doi.org/10.1038/s41598-019-48228-8
  21. Silver nanoparticles: synthesis, characterisation and biomedical applications vol.15, pp.1, 2020, https://doi.org/10.1515/biol-2020-0094
  22. Silver nanoparticles: synthesis, characterisation and biomedical applications vol.15, pp.1, 2020, https://doi.org/10.1515/biol-2020-0094
  23. Antibacterial and Antifungal Activities of PMMAs Implanted Fluorine and/or Silver Ions by Plasma-Based Ion Implantation with Argon vol.13, pp.20, 2020, https://doi.org/10.3390/ma13204525
  24. Effect of Piper betle extract on anti-candidal activity, gelation time, and surface hardness of a short-term soft lining material vol.39, pp.6, 2011, https://doi.org/10.4012/dmj.2019-314
  25. Applications of Silver Nanoparticles in Dentistry: Advances and Technological Innovation vol.22, pp.5, 2011, https://doi.org/10.3390/ijms22052485
  26. Effect of zinc oxide nanoparticles incorporated into tissue conditioner on antifungal, physical, and mechanical properties vol.40, pp.2, 2021, https://doi.org/10.4012/dmj.2020-095
  27. The effects of adding fluorescent carbon nanoparticles on various mechanical properties of denture liners vol.40, pp.3, 2011, https://doi.org/10.4012/dmj.2020-017
  28. Effect of Nanostructures on the Properties of Glass Ionomer Dental Restoratives/Cements: A Comprehensive Narrative Review vol.14, pp.21, 2021, https://doi.org/10.3390/ma14216260