References
- Okita N, Orstavik D, Orstavik J, Ostby K. In vivo and in vitro studies on soft denture materials: microbial adhesion and tests for antibacterial activity. Dent Mater 1991;7:155-60. https://doi.org/10.1016/0109-5641(91)90035-W
- Radford DR, Challacombe SJ, Walter JD. Denture plaque and adherence of Candida albicans to denture-base materials in vivo and in vitro. Crit Rev Oral Biol Med 1999;10:99-116. https://doi.org/10.1177/10454411990100010501
- Nair RG, Samaranayake LP. The effect of oral commensal bacteria on candidal adhesion to denture acrylic surfaces. An in vitro study. APMIS 1996;104:339-49. https://doi.org/10.1111/j.1699-0463.1996.tb00725.x
- Wilkieson C, Samaranayake LP, MacFarlane TW, Lamey PJ, MacKenzie D. Oral candidosis in the elderly in long term hospital care. J Oral Pathol Med 1991;20:13-6. https://doi.org/10.1111/j.1600-0714.1991.tb00880.x
- Rossi T, Laine J, Eerola E, Kotilainen P, Peltonen R. Denture carriage of methicillin-resistant Staphylococcus aureus. Lancet 1995;345:1577.
- Harrison A, Basker RM, Smith IS. The compatibility of temporary soft materials with immersion denture cleansers. Int J Prosthodont 1989;2:254-8.
- Nikawa H, Iwanaga H, Hamada T, Yuhta S. Effects of denture cleansers on direct soft denture lining materials. J Prosthet Dent 1994;72:657-62. https://doi.org/10.1016/0022-3913(94)90300-X
- De Visschere LM, Grooten L, Theuniers G, Vanobbergen JN. Oral hygiene of elderly people in long-term care institutions-a cross-sectional study. Gerodontology 2006;23:195-204. https://doi.org/10.1111/j.1741-2358.2006.00139.x
- Casemiro LA, Gomes Martins CH, Pires-de-Souza Fde C, Panzeri H. Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite - part I. Gerodontology 2008;25:187-94. https://doi.org/10.1111/j.1741-2358.2007.00198.x
- Quinn DM. The effectiveness, in vitro, of miconazole and ketoconazole combined with tissue conditioners in inhibiting the growth of Candida albicans. J Oral Rehabil 1985;12:177-82. https://doi.org/10.1111/j.1365-2842.1985.tb00633.x
- Truhlar MR, Shay K, Sohnle P. Use of a new assay technique for quantification of antifungal activity of nystatin incorporated in denture liners. J Prosthet Dent 1994;71:517-24. https://doi.org/10.1016/0022-3913(94)90193-7
- Chow CK, Matear DW, Lawrence HP. Efficacy of antifungal agents in tissue conditioners in treating candidiasis. Gerodontology 1999;16:110-8. https://doi.org/10.1111/j.1741-2358.1999.00110.x
- Koopmans AS, Kippuw N, de Graaff J. Bacterial involvement in denture-induced stomatitis. J Dent Res 1988;67:1246-50. https://doi.org/10.1177/00220345880670091901
- Budtz-Jorgensen E, Theilade E, Theilade J, Zander HA. Method for studying the development, structure and microflora of denture plaque. Scand J Dent Res 1981;89:149-56.
- Fu J, Ji J, Fan D, Shen J. Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. J Biomed Mater Res A 2006;79:665-74.
- Slawson RM, Lee H, Trevors JT. Bacterial interactions with silver. Biol Met 1990;3:151-4. https://doi.org/10.1007/BF01140573
- Zhao G, Stevens SE Jr. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 1998;11:27-32. https://doi.org/10.1023/A:1009253223055
- Alt V, Bechert T, Steinru¨cke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004;25:4383-91. https://doi.org/10.1016/j.biomaterials.2003.10.078
- Samuel U, Guggenbichler JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 2004;23:S75-8. https://doi.org/10.1016/j.ijantimicag.2003.12.004
- Wright JB, Lam K, Hansen D, Burrell RE. Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 1999;27:344-50. https://doi.org/10.1016/S0196-6553(99)70055-6
- Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, Ghannoum MA. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res 2001;80:903-8. https://doi.org/10.1177/00220345010800031101
- Bruns W, Keppeler H, Baucks R. Suppression of intrinsic resistance to penicillins in Staphylococcus aureus by polidocanol, a dodecyl polyethyleneoxid ether. Antimicrob Agents Chemother 1985; 27:632-9. https://doi.org/10.1128/AAC.27.4.632
- Gristina AG, Jennings RA, Naylor PT, Myrvik QN, Webb LX. Comparative in vitro antibiotic resistance of surface-colonizing coagulase-negative staphylococci. Antimicrob Agents Chemother 1989;33:813-6. https://doi.org/10.1128/AAC.33.6.813
- Reverdy ME, Martra A, Fleurette J. Application of a micromethod to the study of the bactericidal activity of 2 antiseptics based on chlorhexidine gluconate. Pathol Biol (Paris) 1986;34:688-93.
- Steinberg D, Eyal S. Early formation of Streptococcus sobrinus biofilm on various dental restorative materials. J Dent 2002;30:47-51. https://doi.org/10.1016/S0300-5712(01)00058-6
- Satou J, Fukunaga A, Morikawa A, Matsumae I, Satou N, Shintani H. Streptococcal adherence to uncoated and saliva-coated restoratives. J Oral Rehabil 1991;18:421-9.
- Hahnel S, Rosentritt M, Burgers R, Handel G. Adhesion of Streptococcus mutans NCTC 10449 to artificial teeth: an in vitro study. J Prosthet Dent 2008;100:309-15. https://doi.org/10.1016/S0022-3913(08)60212-7
- Abe Y, Ishii M, Takeuchi M, Ueshige M, Tanaka S, Akagawa Y. Effect of saliva on an antimicrobial tissue conditioner containing silver-zeolite. J Oral Rehabil 2004;31:568-73. https://doi.org/10.1111/j.1365-2842.2004.01267.x
- Baehni PC, Takeuchi Y. Anti-plaque agents in the prevention of biofilm-associated oral diseases. Oral Dis 2003;9:23-9. https://doi.org/10.1034/j.1601-0825.9.s1.5.x
- Christensen M, Rungby J, Mogensen SC. Effects of selenium on toxicity and ultrastructural localization of mercury in cultured murine macrophages. Toxicol Lett 1989;47:259-70. https://doi.org/10.1016/0378-4274(89)90144-6
- Matsuura T, Abe Y, Sato Y, Okamoto K, Ueshige M, Akagawa Y. Prolonged antimicrobial effect of tissue conditioners containing silver-zeolite. J Dent 1997;25:373-7. https://doi.org/10.1016/S0300-5712(96)00050-4
- Makila E, Hopsu-Havu VK. Mycotic growth and soft denture lining materials. Acta Odontol Scand 1977;35:197-205. https://doi.org/10.3109/00016357709004655
- Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 2000;52:662-8. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
- Geerts GA, Stuhlinger ME, Basson NJ. Effect of an antifungal denture liner on the saliva yeast count in patients with denture stomatitis: a pilot study. J Oral Rehabil 2008;35:664-9. https://doi.org/10.1111/j.1365-2842.2007.01805.x
- Petering HG. Pharmacology and toxicology of heavy metals: Silver. Pharmacol Ther 1976;1:127-30.
Cited by
- Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria vol.112, pp.5, 2012, https://doi.org/10.1111/j.1365-2672.2012.05253.x
- Sorption, Solubility, Bond Strength and Hardness of Denture Soft Lining Incorporated with Silver Nanoparticles vol.14, pp.1, 2013, https://doi.org/10.3390/ijms14010563
- Nanosilver Application in Dental Cements vol.2012, pp.2090-6072, 2012, https://doi.org/10.5402/2012/365438
- Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options vol.62, pp.1, 2013, https://doi.org/10.1099/jmm.0.045054-0
- Development of Intracanal Formulation Containing Silver Nanoparticles vol.25, pp.4, 2014, https://doi.org/10.1590/0103-6440201302431
- Silver Nanoparticles in Dental Biomaterials vol.2015, pp.1687-8795, 2015, https://doi.org/10.1155/2015/485275
- A novel antimicrobial orthodontic band cement with in situ–generated silver nanoparticles vol.85, pp.2, 2015, https://doi.org/10.2319/022314-127.1
- Review of Nanomaterials in Dentistry: Interactions with the Oral Microenvironment, Clinical Applications, Hazards, and Benefits vol.9, pp.3, 2015, https://doi.org/10.1021/nn505015e
- Physical and Mechanical Properties of Antifungal Ionic Liquid-Incorporated Dental Tissue Conditioner vol.08, pp.05, 2017, https://doi.org/10.4236/msa.2017.85026
- Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles vol.9, pp.3, 2017, https://doi.org/10.4047/jap.2017.9.3.217
- Antifungal and Mechanical Properties of Tissue Conditioner Containing Plant-Derived Component: An In Vitro Study pp.1059941X, 2018, https://doi.org/10.1111/jopr.12546
- Broad-spectrum inhibitory effect of green synthesised silver nanoparticles from Withania somnifera (L.) on microbial growth, biofilm and respiration: a putative mechanistic approach vol.12, pp.3, 2018, https://doi.org/10.1049/iet-nbt.2017.0193
- Fabrication of a silver nanoparticle-coated collagen membrane with anti-bacterial and anti-inflammatory activities for guided bone regeneration vol.13, pp.6, 2018, https://doi.org/10.1088/1748-605X/aae15b
- Antibiofilm activity of synthesized electrospun core-shell nanofiber composites of PLA and PVA with silver nanoparticles vol.5, pp.9, 2018, https://doi.org/10.1088/2053-1591/aad4df
- Advances in Soft Denture Liners: An Update vol.16, pp.4, 2011, https://doi.org/10.5005/jp-journals-10024-1682
- Effect of Addition of Antifungal Agents on Physical and Biological Properties of a Tissue Conditioner: An In-Vitro Study vol.7, pp.3, 2011, https://doi.org/10.15171/apb.2017.059
- Comparison of flexural strength and hardness on denture base resin with silver-fiber filler vol.44, pp.4, 2011, https://doi.org/10.14815/kjdm.2017.44.4.405
- Studies on the Curing Efficiency and Mechanical Properties of Bis-GMA and TEGDMA Nanocomposites Containing Silver Nanoparticles vol.19, pp.12, 2011, https://doi.org/10.3390/ijms19123937
- Evaluation of antibacterial and antifungal properties of a tissue conditioner used in complete dentures after incorporation of ZnO‒Ag nanoparticles vol.13, pp.1, 2011, https://doi.org/10.15171/joddd.2019.002
- Influence of AgVO3 incorporation on antimicrobial properties, hardness, roughness and adhesion of a soft denture liner vol.9, pp.1, 2011, https://doi.org/10.1038/s41598-019-48228-8
- Silver nanoparticles: synthesis, characterisation and biomedical applications vol.15, pp.1, 2020, https://doi.org/10.1515/biol-2020-0094
- Silver nanoparticles: synthesis, characterisation and biomedical applications vol.15, pp.1, 2020, https://doi.org/10.1515/biol-2020-0094
- Antibacterial and Antifungal Activities of PMMAs Implanted Fluorine and/or Silver Ions by Plasma-Based Ion Implantation with Argon vol.13, pp.20, 2020, https://doi.org/10.3390/ma13204525
- Effect of Piper betle extract on anti-candidal activity, gelation time, and surface hardness of a short-term soft lining material vol.39, pp.6, 2011, https://doi.org/10.4012/dmj.2019-314
- Applications of Silver Nanoparticles in Dentistry: Advances and Technological Innovation vol.22, pp.5, 2011, https://doi.org/10.3390/ijms22052485
- Effect of zinc oxide nanoparticles incorporated into tissue conditioner on antifungal, physical, and mechanical properties vol.40, pp.2, 2021, https://doi.org/10.4012/dmj.2020-095
- The effects of adding fluorescent carbon nanoparticles on various mechanical properties of denture liners vol.40, pp.3, 2011, https://doi.org/10.4012/dmj.2020-017
- Effect of Nanostructures on the Properties of Glass Ionomer Dental Restoratives/Cements: A Comprehensive Narrative Review vol.14, pp.21, 2021, https://doi.org/10.3390/ma14216260