• Title/Summary/Keyword: nanoparticles toxicity

Search Result 129, Processing Time 0.026 seconds

In Vitro Cytotoxicity of Zinc Oxide Nanoparticles in Cultured Statens Seruminstitut Rabbit Cornea Cells

  • Lee, Handule;Park, Kwangsik
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.287-294
    • /
    • 2019
  • The possibility of eye exposure for workers participating in manufacturing of nanoparticles or consumers using products containing nanoparticles has been reported, but toxicity studies on the eye are scarce. In this study, cytotoxicity of five nanoparticles including silver, ceria, silica, titanium and zinc were tested using Statens Seruminstitut Rabbit Cornea (SIRC) cells. When cells were treated with nanoparticles with concentrations of $1-100{\mu}g/mL$ for 24 hr, zinc oxide nanoparticles showed higher toxicity to cornea cells. $LC_{50}$ of zinc oxide nanoparticles was less than $25{\mu}g/mL$ but those of other nanoparticles could not be calculated in this test, which means more than $100{\mu}g/mL$. Generation of reactive oxygen species was observed, and expression of apoptosis related biomarkers including Bax and Bcl-2 were changed after treatment of zinc oxide nanoparticles, while no other significant toxicity-related changes were observed in cornea cells treated with Ag, $CeO_2$, $SiO_2$ and $TiO_2$ nanoparticles.

Excretion, Tissue Distribution and Toxicities of Titanium Oxide Nanoparticles in Rats after Oral Administration over Five Consecutive Days (티타늄나노입자의 랫드 5일 반복 경구투여 후 배설, 조직분포 및 독성에 관한 평가연구)

  • Kim, Hyejin;Park, Kwangsik
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.4
    • /
    • pp.294-303
    • /
    • 2014
  • Objectives: Excretion and tissue distribution of titanium oxide nanoparticles were evaluated in rats after oral administration. The relation between toxicity and systemic concentration of nanoparaticles was investigated. Methods: Rats were orally treated with titanium oxide nanoparticles (10, 100 mg/kg) for five consecutive days. General toxicity, blood chemistry, and serum biochemical analysis were analyzed. Titanium concentration in liver, kidney, lung, urine and feces were measured and histopathology was performed in these organs. Results: Induction of toxicological parameters was not observed and titanium nanoparticles were excreted via feces. Conclusion: Absorption of titanium oxide nanoparticles via the gastrointestinal tract after oral administration was very poor and systemic concentration of titanium oxide nanoparticles was not elevated. Titanium oxide nanoparticles did not cause toxicities in rats after oral administration.

Toxicity of Nanomaterials and Strategy of Risk Assessment (나노물질의 독성과 위해성평가 전략)

  • Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.259-271
    • /
    • 2005
  • Engineered nanoparticles exhibit a variety of unique and tunable chemical and physical properties. These unique properties make the nanoparticles central components and widespread potential applications in nanoindustry. However, the potential toxicities of nanoparticles have not been fully evaluated. Recently, the impacts of nanoparticles to human and environment became the emerging issue of toxicology. In this article, physicochemical properties and toxicities of carbon nanotube, fullerene, quantum dots, and other types of nanomaterials were reviewed and the strategy of risk assessment were suggested based on the frame of chemical assessment.

Cytotoxic Effects of Nanoparticles Assessed In Vitro and In Vivo

  • Cha, Kyung-Eun;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1573-1578
    • /
    • 2007
  • An increasing number of applications is being developed for the use of nanoparticles in various fields. We investigated possible toxicities of nanoparticles in cell culture and in mice. Nanoparticles tested were Zn (300 nm), Fe (100 nm), and Si (10-20, 40-50, and 90-110 nm). The cell lines used were brain, liver, stomach, and lung from humans. In the presence of nanopaticles, mitochodrial activity decreased zero to 15%. DNA contents decreased zero to 20%, and glutathione production increased zero to 15%. None of them showed a dose dependency. Plasma membrane permeability was not altered by nanoparticles. In the case of Si, different sizes of the nanoparticles did not affect cytotoxicity. The cytotoxicity was also shown to be similar in the presence of micro-sized ($45\;{\mu}m$) Si particles. Organs from mice fed with nanoparticles showed nonspecific hemorrhage, lymphocytic infiltration, and medullary congestion. A treatment with the micro-sized particle showed similar results, suggesting that the acute in vivo toxicity was not altered by nano-sized particles.

Acute Toxicity and Tissue Distribution of Cerium Oxide Nanoparticles by a Single Oral Administration in Rats

  • Park, Eun-Jung;Park, Young-Kwon;Park, Kwang-Sik
    • Toxicological Research
    • /
    • v.25 no.2
    • /
    • pp.79-84
    • /
    • 2009
  • Cerium oxide nanoparticles (size: 30 nm) were prepared by the supercritical synthesis method, Acute oral toxicity and tissue distribution of the nanoparticles were evaluated by a single administration in rats. Oral administration of the nanoparticles to the rats did not lead to death when the animals were treated by a dose of 5 g/kg (high dose) as well as 100 mg/kg (low dose). Abnormal clinical signs, changes in serum biochemistry and hematology were not observed in high-dose treated group compared to the vehicle control group. Lesions in liver, lung and kidney were not observed in high-dose treated group by histopathological examination. Tissue distribution analysis in liver, kidney, spleen, lung, testis and brain was performed on day 1, day 7 and day 14 after treatment. The average values of the accumulated cerium oxide nanoparticles were elevated in all tissues but statistical significance was only shown in lung. Low levels of tissue distributions after a single oral administration seem to be the low bioavailability of the nanoparticles.

Research Trend of Aquatic Ecotoxicity of Gold Nanoparticles and Gold Ions (금나노입자 및 금이온의 수서생태독성 연구동향)

  • Nam, Sun-Hwa;An, Youn-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.313-319
    • /
    • 2012
  • Various nanomaterials may flow into the aquatic ecosystem via production, use, and treatment processes. Especially, gold nanoparticles (AuNPs) were categorized as manufactured nanomaterials presented by the Organization for Economic Cooperation and Development Working Party on Manufactured Nanomaterials (OECD WPMN) in 2010. AuNPs have been used in medical area, however, they were reported to induce cytotoxicity and oxidative DNA damage, as well as down-regulation of the DNA repair gene in mice and human cell lines. In this study, the aquatic toxicity data of AuNPs and gold ions were collected, with the specific test methods analyzed with respect to the form and size of AuNPs, test species, exposure duration, and endpoints. Currently, aquatic toxicity data of AuNPs and gold ions have been presented in 14 studies including 4 fish, 6 crustacean, 2 green algae, and 2 macrophytes studies, as well as a further 8 studies including 4 fish, 4 crustacean, 1 platyhelminthes, and 1 green algae, respectively. The AuNPs were 0.8-100 nm in size, as gold nanoparticles, gold nanorod, glycodendrimer-coated gold nanoparticles, and amine-coated gold nanoparticles. The tested endpoints were the individual toxicities, such as mortality, malformation, reproduction inhibition, growth inhibition and genetic toxicity such as oxidative stress, gene expression, and reactive oxygen species formation. The accumulation of AuNPs was also confirmed in the various receptor organs. These results are expected to be useful in understanding the aquatic toxicity of AuNPs and gold ions, as well as being applicable to future toxicity studies on AuNPs.

Nasal and Pulmonary Toxicity of Titanium Dioxide Nanoparticles in Rats

  • Kwon, Soonjin;Yang, Young-Su;Yang, Hyo-Seon;Lee, Jinsoo;Kang, Min-Sung;Lee, Byoung-Seok;Lee, Kyuhong;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.217-224
    • /
    • 2012
  • In recent decades, titanium dioxide ($TiO_2$) nanoparticles have been used in various applications, including paints, coatings, and food. However, data are lacking on the toxicological aspects associated with their use. The aim of this study was to assess the inhalation toxicity of $TiO_2$ nanoparticles in rats by using inhalation exposure. Male Wistar rats were exposed to $TiO_2$ nanoparticles for 2 weeks (6 hr/day, 5 days/week) at a mean mass concentration of $11.39{\pm}0.31mg/m^3$. We performed time-course necropsies at 1, 7, and 15 days after exposure. Lung inflammation and injury were assessed on the basis of the total and individual cell counts in bronchoalveolar lavage fluid (BALF), and by biochemical assays, including an assay for lactate dehydrogenase (LDH). Furthermore, histopathological examination was performed to investigate the lungs and nasal cavity of rats. There were no statistically significant changes in the number of BALF cells, results of biochemical assays of BALF and serum, and results of cytokine analysis. However, we did observe histopathological changes in the nasal cavity tissue. Lesions were observed at post-exposure days 1 and 7, which resolved at post-exposure day 15. We also calculated the actual amounts of $TiO_2$ nanoparticles inhaled by the rats. The results showed that the degree of toxicity induced by $TiO_2$ nanoparticles correlated with the delivered quantities. In particular, exposure to small particles with a size of approximately 20 nm resulted in toxicity, even if the total particle number was relatively low.

Review of Nanoparticles in Drinking Water: Risk Assessment and Treatment (나노입자의 현황조사 및 처리방안 마련을 위한 문헌연구)

  • Kim, Seung-Hyun;Hong, Seung-kwan;Yoon, Je-Yong;Kim, Doo-Il;Lee, Sang-Ho;Kweon, Ji-Hyang;Kim, Hyung-Soo;ko, Seok-Dock;Kuk, Ji-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.201-212
    • /
    • 2011
  • Nanotechnology is the applied science which develops new materials and systems sized within 1 to 100 nanometer, and improves their physical, chemical, and biological characteristics by manipulating on an atomic and molecular scale. This nanotechnology has been applied to wide spectrum of industries resulting in production of various nanoparticles. It is expected that more nanoparticles will be generated and enter to natural water bodies, imposing great threat to potable water resources. However their toxicity and treatment options have not been throughly investigated, despite the significant growth of nanotechnology-based industries. The objective of this study is to provide fundamental information for the management of nanoparticles in water supply systems through extensive literature survey. More specifically, two types of nanoparticles are selected to be a potential problem for drinking water treatment. They are carbon nanoparticles such as carbon nanotube and fullerene, and metal nanoparticles including silver, gold, silica and titanium oxide. In this study, basic characteristics and toxicity of these nanoparticles were first investigated systematically. Their monitoring techniques and treatment efficiencies in conventional water treatment plants were also studied to examine our capability to mitigate the risk associated with nanoparticles. This study suggests that the technologies monitoring nanopartilces need to be greatly improved in water supply systems, and more advanced water treatment processes should be adopted for better control of these nanoparticles.

Size-dependent toxicity of silver nanoparticles to Glyptotendipes tokunagai

  • Choi, Seona;Kim, Soyoun;Bae, Yeon-Jae;Park, June-Woo;Jung, Jinho
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.3.1-3.6
    • /
    • 2015
  • Objectives This study aims to evaluate the size-dependent toxicity of spherical silver nanoparticles (Ag NPs) to an endemic benthic organism, Glyptotendipes tokunagai. Methods Ag nanoparticles of three nominal sizes (50, 100, and 150 nm) capped with polyvinyl pyrrolidone (PVP-Ag NPs) were used. Their physicochemical properties, acute toxicity (48 hours), and bioaccumulation were measured using third instar larvae of G. tokunagai. Results The aggregation and dissolution of PVP-Ag NPs increased with exposure time and concentration, respectively, particularly for 50 nm PVP-Ag NPs. However, the dissolved concentration of Ag ions was not significant compared with the median lethal concentration value for $AgNO_3$ (3.51 mg/L). The acute toxicity of PVP-Ag NPs was highest for the smallest particles (50 nm), whereas bioaccumulation was greatest for the largest particles (150 nm). However, larger PVP-Ag NPs were absorbed and excreted rapidly, resulting in shorter stays in G. tokunagai than the smaller ones. Conclusions The size of PVP-Ag NPs significantly affects their acute toxicity to G. tokunagai. In particular, smaller PVP-Ag NPs have a higher solubility and stay longer in the body of G. tokunagai, resulting in higher toxicity than larger PVP-Ag NPs.

The Effect of Nano-scale Zn-$TiO_2$ and Pure $TiO_2$ Particles were Prepared using a Hydrothermal Method on Zebrafish Embryogenesis (수열합성법으로 제조된 Zn-$TiO_2$ 나노입자와 $TiO_2$ 나노입자가 zebrafish 배발생에 미치는 영향)

  • Yeo, Min-Kyeong;Kim, Hyo-Eun
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.4
    • /
    • pp.333-339
    • /
    • 2009
  • In this study, we investigated the biological toxicity of nano-scale Zn (0.1, 0.5, and 1 mol%)-doped $TiO_2$ and pure $TiO_2$ nanoparticles using zebrafish embryogenesis as our model organism. Zn-doped $TiO_2$ nanoparticles were prepared using a conventional hydrothermal method for the insertion of zinc into the $TiO_2$ framework. The characters of Zn-doped $TiO_2$ (0.1%, 0.5%, 1%Zn) and pure $TiO_2$ were about 7~8 nm. These sizes were smaller than 100~200 nm of $TiO_2$ was prepared using the sol-gel method. Particularly, in this study, we found no significant biological toxicity in the hatching rate and abnormal rate under expose pure $TiO_2$ and Zn-doped $TiO_2$ nanoparticles were prepared using a conventional hydrothermal method of zebrafish. It was different from the biological damage under $TiO_2$ nanoparticles were prepared using sol-gel method. We assessed that the damage was not linked to the particle's nanometer size, but rather due to the prepare method. Moreover, $TiO_2$ nanoparticles were prepared using a hydrothermal method were not shown to cause cytotoxic effects, like apoptosis and necrosis, that are the major markers of toxicity in organisms exposed to nanomaterials. Therefore, there is some relationship with biological toxicity of nanoparticles and the prepare method of nanometer size particles.